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Fully distributed systems: Multi-Agent Networks
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A large scale machine learning system



Problem Formulation

State estimation: A static state 6* ¢ R that each of the
non-Byzantine agent is interested in learning.

Constraints: an agent can collect partial and noisy
measurements only.

@ (Linear observation model) For each agent, its local
measurement y;(t) at time t is generated as

y,-(t) = Hi6* + W,'(l‘)7
where

(1) H; € R"*9 where n; < d, is the local observation matrix

(2) w;(t)’s are the observation noises that are zero mean and

bounded. The observation noises across agents are
independent.

Applications: 10T, machine learning, wireless networks, sensor networks,
and robotic networks



Communication network

@ a collection of n agents communicating with each other
through a network G(V,£), where V = {1,--- ;n} and £
denote the set of agents and communication links,
respectively.

@ Among the n agents, an unknown subset of agents might
be compromised and behave adversarially.
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An example of an unreliable multi-agent network



Fault/Adversary Model - |

Byzantine Fault Model: There exists a system adversary that
can choose up to b out of n agents to compromise and control.
Let A C N be the set of compromised agents, referred to as
Byzantine agents.

"The Byzantine Generals Problem", LAMPORT, SHOSTAK, and PEASE

@ The adversary has complete knowledge of the network
e the local program that each good agent is supposed to run;

e the current status of the system;

@ running history of the system.



Fault/Adversary Model - I

The Byzantine agents are capable of

@ colluding with each other;

@ deviate from their pre-specified local programs to arbitrarily
misrepresent information to the good agents;

@ can mislead each of the good agents in a unique fashion,
i.e., letting m;(t) € RY be the message sent from agent
i€ Atoagentje V\ Aattime t, itis possible that
m(t) # myp(t) forj #j e V\ A
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An example of an unreliable multi-agent network



Problem Formulation

State estimation: A static state 6* ¢ RY that each of the
non-Byzantine agent is interested in learning.

Constraints: an agent can collect partial and noisy
measurements only.

@ (Linear observation model) For each agent, its local
measurement y;(t) at time t is generated as
y,'(t) = H6* + W,'(t),
where

(1) H; € R"*9 where n; < d, is the local observation matrix

(2) w;(t)’s are the observation noises that are zero mean and

bounded. The observation noises across agents are
independent.

*The local observation of a Byzantine agent is well-defined.



Reaching agreement in the presence of
Byzantine faults is far from trivial.

Example: For binary consensus, even in complete graphs, no
distributed algorithms can tolerate more than 1/3 of the agents
to be Byzantine. [Lamport, Shostak, and Pease, 82]



Reaching agreement in the presence of
Byzantine faults is far from trivial.

Example: For binary consensus, even in complete graphs, no
distributed algorithms can tolerate more than 1/3 of the agents
to be Byzantine. [Lamport, Shostak, and Pease, 82]

The reached agreement could be biased and
the amount of bias is out of the control of the
good agents.



Related Work

@ Adversary-resilient State Estimation

There is a rich line of work on the adversary-resilient state
estimation problem wherein the existence of a fusion
center is assumed. [Kosut-Jia-Thomas-Tong '11] [Kim and
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Our focus:

Noisy measurements, partially observable local matrix, and
finite-time guarantees.




A Distributed Optimization Prospective: Asymptotic

local function

For each agent i € V, define its asymptotic local function
fi:RY > Ras

1
fi(x) = EE [IIH/'X - }’iHﬂ )

where the expectation of f;(x) is taken over the randomness of
w;.
1* f; is well-defined for each agent regardless of whether it is
a good agent or a Byzantine agent

2* Since the distribution of w; is unknown to agent /, at any
finite t, function f; is not accessible to agent J.



A Distributed Optimization Prospective: Finite-time

local function

The agent has access to the finite-time or empirical local
function f; ; defined as

t
Z IHix = yi(s)13

whose gradient at x is

Viia(x) = EjHT (Hix — yi(s))

s=1

1 t
= HHi(x = 0%) — HT 2 3" wi(s)

s=1



A First Thought?

Question: Combine the local gradient descent with
multi-dimensional Byzantine resilient consensus?

@ The computation complexity of the relevant consensus
component is prohibitively high
e which typically relies on using Tverberg points

@ assured convergence rate scales poorly in d



Proposed Algorithm

High-level idea:

Each good agent iteratively aggregates the received messages
by, for each coordinate, discarding the largest b and the
smallest b values, and averaging the remaining.

@ Local gradient descent: Agent i first computes the noisy
local gradient V£ ;(x;(t — 1)), and performs local gradient
descent to obtain z(t), i.e.,

zj(t) = x;(t — 1) = Vi (x;(t = 1)).




Proposed Algorithm (continued)

@ Information exchange: It exchanges z;(t) with other agents
in its local neighborhood. Recall that mj(t) € R? is the
message sent from agent / to agent j at time ¢. It relates to
Zj(t) as follows:

where x denotes an arbitrary value.

@ Robust aggregation: For each coordinate k = 1,...,d, the
agent computes the trimmed mean to obtain x;(t).




Main results: Complete graphs

for ease of illustration: Applicable to computer networks and
wireless networks with message forwarding

Lemma

For each iteration t, each good agenti € V /A, and each k,
there exist coefficients (5,’]‘ (1), je V/A) such that

C Xik(t) = ZjeV/A 5/]((1') <Zl(t)v ek>’.

© 0 < B(t) < 515 forallje V/Aand Y., 4 B() =1,
where ¢ = |V/Al.



Main results: Complete graphs

for ease of illustration: Applicable to computer networks and
wireless networks with message forwarding

Lemma

For each iteration t, each good agenti € V /A, and each k,
there exist coefficients (5,’]‘ (1), je V/A) such that

o xf(t) = Yjev/a ﬂ,-f(t) (Zi(t), ex);

© 0 < B(t) < 515 forallje V/Aand Y., 4 B() =1,
where ¢ = |V/A|.
QObservations

@ The update of x; uses the information provided by the good
agents only;

@ each of the good agent has limited impact on x;;
Remaining analysis is still non-trivial because

(85(1), j € V/A) # (B(1), j € V/A) for k £ K



Main results: Complete graphs

Assumption 1

Forallk =1,--- ,d, we have that
575 2 [(-H ) e, <1
jeV/A

@ Note that it can well be the case that
H (I — HjTH,-) ekH1 > 1 for some good agents.

@ None of the agents are required to satisfy
H(I - HjTH,-) ekH1 < 1 simultaneously forallk =1,--- ,d.



Main theorem

Lotp 2 maxgreres z,-ew\!g:gw} %y ang

Co £ maxjcy,a|lHill,-

Theorem
Suppose Assumption 1 holds and the graph is complete. Then

xi(t) — 6% 2% 0.
,gﬁva/ﬁ\l i(1) oo =

Moreover, with probability at least
2 2
1= gexp (=™ ) it holds that

max [|xi(t) — 0"l < p' JS 1%:(0) — 6"l

ievV/A
1
> y/trace()) LAS— de.

i€v/A m=1

3



Main results: Incomplete graphs

Theorem

Under the assumption that ensures Byzantine consensus with
scalar inputs, if an assumption analogous to Assumption 1
holds, then any given ¢ € (0,1), any e > 0, and

t>Q (nz/ez) (Iog; + Iogn> ,

with probability at least 1 — ¢, it holds that

xi(t) —0%|| _ < pt x;(0) — 0*
max ||x;(t) oo <P ig%ll i(0) lloo

i€ev/A
t—1 ﬁm
+ Con Z — AC
m=1 t—m

where jp € (0,1).



Numerical Examples: Energy Efficiency Data Set

@ Regression dataset on UCI Machine Learning Repository':
In this dataset, the vector 6* € R8, including eight features.

@ We consider a network of |V \ A| = 160 agents. Each
agent i observes only one feature corrupted by a Gaussian
noise N (0, 0.25). Also, each agent i is connected to 40
agents i —20,i —19,...,i+19,i+ 20.

—4 Adversarial Agents
——5 Adversarial Agents
6 Adversarial Agents
—7 Adversarial Agents
——8 Adversarial Agents
9 Adversarial Agents
— 10 Adversarial Agents
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'https://archive.ics.uci.edu/ml/datasets/Energy-+efficienc



