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Fully distributed systems: Multi-Agent Networks



Fully distributed systems: Multi-Agent Networks

A large scale machine learning system



Problem Formulation

State estimation: A static state θ∗ ∈ Rd that each of the
non-Byzantine agent is interested in learning.

Constraints: an agent can collect partial and noisy
measurements only.

(Linear observation model) For each agent, its local
measurement yi(t) at time t is generated as

yi (t) := Hiθ
∗ + wi (t),

where
(1) Hi ∈ Rni×d , where ni � d , is the local observation matrix
(2) wi (t)’s are the observation noises that are zero mean and

bounded. The observation noises across agents are
independent.

Applications: IoT, machine learning, wireless networks, sensor networks,
and robotic networks



Communication network

a collection of n agents communicating with each other
through a network G(V, E), where V = {1, · · · ,n} and E
denote the set of agents and communication links,
respectively.
Among the n agents, an unknown subset of agents might
be compromised and behave adversarially.

An example of an unreliable multi-agent network



Fault/Adversary Model - I

Byzantine Fault Model: There exists a system adversary that
can choose up to b out of n agents to compromise and control.
Let A ⊆ N be the set of compromised agents, referred to as
Byzantine agents.

"The Byzantine Generals Problem", LAMPORT, SHOSTAK, and PEASE

The adversary has complete knowledge of the network
the local program that each good agent is supposed to run;

the current status of the system;

running history of the system.



Fault/Adversary Model - II
The Byzantine agents are capable of

colluding with each other;
deviate from their pre-specified local programs to arbitrarily
misrepresent information to the good agents;
can mislead each of the good agents in a unique fashion,
i.e., letting mij(t) ∈ Rd be the message sent from agent
i ∈ A to agent j ∈ V \ A at time t , it is possible that
mij(t) 6= mi j ′(t) for j 6= j ′ ∈ V \ A.

An example of an unreliable multi-agent network



Problem Formulation

State estimation: A static state θ∗ ∈ Rd that each of the
non-Byzantine agent is interested in learning.

Constraints: an agent can collect partial and noisy
measurements only.

(Linear observation model) For each agent, its local
measurement yi(t) at time t is generated as

yi (t) := Hiθ
∗ + wi (t),

where
(1) Hi ∈ Rni×d , where ni � d , is the local observation matrix
(2) wi (t)’s are the observation noises that are zero mean and

bounded. The observation noises across agents are
independent.

*The local observation of a Byzantine agent is well-defined.



Reaching agreement in the presence of
Byzantine faults is far from trivial.

Example: For binary consensus, even in complete graphs, no
distributed algorithms can tolerate more than 1/3 of the agents
to be Byzantine. [Lamport, Shostak, and Pease, 82]

The reached agreement could be biased and
the amount of bias is out of the control of the
good agents.
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Related Work

Adversary-resilient State Estimation
There is a rich line of work on the adversary-resilient state
estimation problem wherein the existence of a fusion
center is assumed. [Kosut-Jia-Thomas-Tong ’11] [Kim and
Poor ’11] [Sou-Sandberg-Johansson ’13] . . .

Adversary-resilient Distributed State Estimation
[Sundaram-Hadjicostis ’11] [Chen-Kar-Moura ’18 a, b,c,d,e]
[Mitra-Sundaram ’18] [Mitra-Ghawash-Sundaram-Abbas ’21]. . .

Our focus:
Noisy measurements, partially observable local matrix, and
finite-time guarantees.
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A Distributed Optimization Prospective: Asymptotic
local function

For each agent i ∈ V, define its asymptotic local function
fi : Rd → R as

fi(x) :=
1
2
E
[
‖Hix − yi‖22

]
,

where the expectation of fi(x) is taken over the randomness of
wi .
1* fi is well-defined for each agent regardless of whether it is

a good agent or a Byzantine agent

2* Since the distribution of wi is unknown to agent i , at any
finite t , function fi is not accessible to agent i .



A Distributed Optimization Prospective: Finite-time
local function

The agent has access to the finite-time or empirical local
function fi,t defined as

fi,t (x) :=
1
2t

t∑
s=1

‖Hix − yi(s)‖22 ,

whose gradient at x is

∇fi,t (x) =
1
t

t∑
s=1

H>i (Hix − yi(s))

= H>i Hi(x − θ∗)− H>i
1
t

t∑
s=1

wi(s).



A First Thought?

Question: Combine the local gradient descent with
multi-dimensional Byzantine resilient consensus?

The computation complexity of the relevant consensus
component is prohibitively high

which typically relies on using Tverberg points

assured convergence rate scales poorly in d



Proposed Algorithm

High-level idea:
Each good agent iteratively aggregates the received messages
by, for each coordinate, discarding the largest b and the
smallest b values, and averaging the remaining.

Local gradient descent: Agent i first computes the noisy
local gradient ∇fi,t (xi(t − 1)), and performs local gradient
descent to obtain zi(t), i.e.,

zi(t) = xi(t − 1)−∇fi,t (xi(t − 1)).



Proposed Algorithm (continued)

Information exchange: It exchanges zi(t) with other agents
in its local neighborhood. Recall that mij(t) ∈ Rd is the
message sent from agent i to agent j at time t . It relates to
zi(t) as follows:

mij(t) =

{
zi(t) if i ∈ (V/A);

? if i ∈ A,

where ? denotes an arbitrary value.
Robust aggregation: For each coordinate k = 1, . . . ,d , the
agent computes the trimmed mean to obtain xi(t).



Main results: Complete graphs
for ease of illustration: Applicable to computer networks and
wireless networks with message forwarding

Lemma

For each iteration t, each good agent i ∈ V/A, and each k,
there exist coefficients

(
βk

ij (t), j ∈ V/A
)

such that

xk
i (t) =

∑
j∈V/A β

k
ij (t)

〈
zj(t),ek

〉
;

0 ≤ βk
ij (t) ≤ 1

φ−b for all j ∈ V/A and
∑

j∈V/A β
k
ij (t) = 1,

where φ = |V/A|.

Observations
The update of xi uses the information provided by the good
agents only;
each of the good agent has limited impact on xi ;

Remaining analysis is still non-trivial because(
βk

ij (t), j ∈ V/A
)
6=
(
βk ′

ij (t), j ∈ V/A
)

for k 6= k ′
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Main results: Complete graphs

Assumption 1
For all k = 1, · · · ,d , we have that

1
φ− b

∑
j∈V/A

∥∥∥(I− H>j Hj

)
ek

∥∥∥
1
< 1.

Note that it can well be the case that∥∥∥(I− H>j Hj

)
ek

∥∥∥
1
≥ 1 for some good agents.

None of the agents are required to satisfy∥∥∥(I− H>j Hj

)
ek

∥∥∥
1
< 1 simultaneously for all k = 1, · · · ,d .



Main theorem

Let ρ , maxk :1≤k≤d

∑
j∈V/A

∥∥∥(I−H>
j Hj

)
ek

∥∥∥
1

φ−b , and
C0 , maxi∈V/A ‖Hi‖2.

Theorem
Suppose Assumption 1 holds and the graph is complete. Then

max
i∈V/A

‖xi(t)− θ∗‖∞
a.s.→ 0.

Moreover, with probability at least
1− φ exp

(
−ε2(1−ρ)2t

8C2

)
, it holds that

max
i∈V/A

‖xi(t)− θ∗‖∞ ≤ ρ
t max

i∈V/A
‖xi(0)− θ∗‖∞

+ C0

 ∑
i∈V/A

√
trace(Σj)

 t−1∑
m=1

ρm
√

t −m
+ φε.



Main results: Incomplete graphs

Theorem
Under the assumption that ensures Byzantine consensus with
scalar inputs, if an assumption analogous to Assumption 1
holds, then any given δ ∈ (0,1), any ε > 0, and

t ≥ Ω
(

n2/ε2
)(

log
1
δ

+ log n
)
,

with probability at least 1− δ, it holds that

max
i∈V/A

‖xi(t)− θ∗‖∞ ≤ ρ̃
t max

i∈V/A
‖xi(0)− θ∗‖∞

+ C̃0n
t−1∑
m=1

ρ̃m
√

t −m
+ ε,

where ρ̃ ∈ (0,1).



Numerical Examples: Energy Efficiency Data Set
Regression dataset on UCI Machine Learning Repository1:
In this dataset, the vector θ∗ ∈ R8, including eight features.
We consider a network of |V \ A| = 160 agents. Each
agent i observes only one feature corrupted by a Gaussian
noise N (0,0.25). Also, each agent i is connected to 40
agents i − 20, i − 19, . . . , i + 19, i + 20.
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1https://archive.ics.uci.edu/ml/datasets/Energy+efficiency


