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Remainder of this workshop

1 Byzantine consensus

Ensures secure and effective information fusion while using
local communication only

2 Byzantine-resilient distributed optimization

Fundamental limits
Optimal algorithms

3 Byzantine-resilient light-weight social learning

The first provably secure algorithm
A light-weight variant
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Byzantine Consensus



Communication network

a collection of n agents
communicating with each other
through a network G(V, E), where
V = {1, · · · ,n} and E denote the
set of agents and communication
links, respectively.

Among the n agents, an unknown subset of agents might
be compromised and behave adversarially.



Fault/Adversary Model - I

Byzantine Fault Model: There exists a system adversary that
can choose up to b out of n agents to compromise and control.
Let A ⊆ N be the set of compromised agents, referred to as
Byzantine agents.

"The Byzantine Generals Problem", LAMPORT, SHOSTAK, and PEASE

The adversary has complete knowledge of the network
the local program that each good agent is supposed to run;

the current status of the system;

running history of the system.



Fault/Adversary Model - II

The Byzantine agents can

collude with each other;

deviate from their
pre-specified local programs
to arbitrarily misrepresent
information to the good
agents;

mislead each of the good agents in a unique fashion, i.e.,
letting mij(t) ∈ Rd be the message sent from agent i ∈ A to
agent j ∈ V \ A at time t , it is possible that mij(t) 6= mi j ′(t)
for j 6= j ′ ∈ V \ A.



Reaching agreement in the presence of
Byzantine faults is far from trivial.

Example: For binary consensus, even in complete graphs, no
distributed algorithms can tolerate more than 1/3 of the agents
to be Byzantine. [Lamport, Shostak, and Pease, 82]

The reached agreement could be biased and
the amount of bias is out of the control of the
good agents.
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Background-I: Byzantine Fault-Tolerance

proposed in [Pease–Shostak–Lamport, J. ACM80’]

FLP impossibility result: Asynchronous Byzantine
consensus is impossible to solve (FLP impossibility)

[Fischer – Lynch – Peterson, J. ACM85’]

Approximate Byzantine consensus: Relaxing the necessity
of agree with each other exactly [Dolev et al., J. ACM86’]

Initially proposed for asynchronous systems, extended to
synchronous systems
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Background-II

n: the total # of agents;
b: the maximal number of Byzantine (i.e., compromised) agents

Communication with message relay:
Networks with bidirectional links [Fisher-Lynch-Paterson,
PODC85’]

n ≥ 3b + 1, and 2b + 1 node connectivity

Networks with directional links [Tseng-Vaidya, PODC15’]

based on four sets nodes partition

Local communication: an agent can only communicate
with its immediate neighbors
[Vaidya-Tseng-Liang, PODC’12], [LeBlanc et al., HiCoNS ’12]



Questions Answered

The impact of communication range:

Will there be a tight topology condition over G?

If yes, how does the communication range affect the
tight condition?

Is there any simple algorithm that works under the
tight condition?



Model

Synchronous system

Communication network: arbitrary directed graph
Node i can send message to node j : if node j is reachable
via at most ` hops.
A message is modeled as a tuple m = (w ,P).
Messages delivered by the network layer.

Up to b Byzantine faults
Tamper messages value if it belongs to an admissible
communication path, leaving message path unchanged.



Model



Approximate Consensus: Correctness Conditions

ε–Agreement

Validity: Outputs are within the range of inputs at fault-free
nodes.

Termination



Iterative Structure

Each fault-free node i maintains a state vi : initial state = input

Algorithm Structure: For t ≥ 1 and node i ,
1 Transmit step.

2 Receive step. LetMi [t ] be the set of messages that node i
in this step.

3 Update step: Node i updates its state as

vi [t ] = Zi(Mi [t ]).

Minimal memory across iterations
Question: Which directed graphs can solve iterative
approximate Byzantine consensus?
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`-restricted connectivity

Definition (`-restricted connectivity)

Suppose that W 6= is a set of a node and that x /∈W . A node
set S` with x /∈ S` is called an `-restricted (W , x) cut if the
deletion of S` disconnects all (W , x)-paths of length up to `.
The `-restricted (W , x) connectivity, denoted by κ`(W , x) is the
size of the smallest `-restricted (W , x) cut.

Node i is influenced by W if κ`(W , i) > b + 1
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node i is able to utilize at least one

untampered message for its state update.

Node i is influenced by W
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Necessary Condition: Condition NC

Definition
For nonempty disjoint not sets A and B, we say A⇒` B
if and only if there exists a node i ∈ B such that κ`(A, i) ≥ b + 1.

Condition NC for a given `

For any node partition L,C,R,F of G such that L 6= ∅,R 6= ∅
and |F | ≤ b, in GF , at least one of the two conditions below
must be true: (i) R ∪ C ⇒` L; (ii) L ∪ C ⇒` R.
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Necessary Condition: Proof Sketch

Suppose neither a golden
nor a silver node exists.
Suppose each node in L has
value 1 and each node in R,
and C has value 0.
Byzantine nodes in F tell
each node in L their values
are all 1 and tell each node
in R their values are 0.

Each node in L does not know whether it should trust R ∪
C or F . If it chooses to trust R∪C, then it should output 0.
If it chooses to trust F , then it will update its value closer
to 1.



Necessary Condition: Condition NC

Condition NC for ` = 1 [Vaidya-Tseng-Liang,PODC’12]

For any node partition L,C,R,F of G such that L 6= ∅,R 6= ∅
and |F | ≤ f , in the induced subgraph GF , at least one of the two
conditions below must be true: (i) there exists a node i ∈ L such
that

∣∣(R ∪ C) ∩ N−i
∣∣ ≥ b + 1; (ii) there exists a node j ∈ R such

that
∣∣∣(L ∪ C) ∩ N−j

∣∣∣ ≥ b + 1.



Necessary Condition NC

Allowing message relay (i.e., ` > 1), the network necessary
condition is strictly more relax than the one for single-hop
message transmission model obtained in [Vaidya-Tseng-Liang,
PODC12].

In this system, there are five nodes p1,p2,p3,p4 and p5; all
communication links are bi-directional; and at most one node can be

adversarial, i.e., b = 1.



Necessary Condition NC

For l > 1, Condition NC is (in general) weaker than necessary
condition derived under single-hop message transmission
model obtained in [PODC12: Vaidya-Tseng-Liang].

This graph does not satisfy the one in [PODC12:
Vaidya-Tseng-Liang]
satisfies our Condition NC for ` > 1.



Recalling the iterative structure

Each fault-free node i maintains a state vi : initial state = input

Algorithm Structure: For t ≥ 1 and node i ,
1 Transmit step.

2 Receive step. LetMi [t ] be the set of messages that node i
in this step.

3 Update step: Node i updates its state as

vi [t ] = Zi(Mi [t ]).

For l = 1, [PODC12: Vaidya et al.] and [HiCoNSa12: LeBlanc
et al.] both use

“Adversarial Robust" update= trimming + averaging
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Trimming Strategy: Removed Messages Set
Construction

For each i , the trimmed messages setsMis[t ] andMil [t ] are
constructed (identified) as

LetM′i [t ] =Mi [t ]− {(vi [t − 1], (i , i))}.

Sort messages inM′i [t ] in an increasing order.

LetMis[t ] be the largest sized subset ofM′i [t ] such that
(i) for all m ∈M′i [t ]−Mis[t ] and m′ ∈Mis[t ] we have

value(m) ≥ value(m′),
(ii) at least f nodes are needed to collectively tamper all

messages inMis[t ].

SetMil [t ] is constructed similarly.
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Algorithm 1

1 Transmit step.

2 Receive step.

3 Update step:

vi [t ] =
1

|Mi [t ]−Mis[t ]−Mil [t ]|
∑

m∈Mi [t]−Mis[t]−Mil [t]

wm



Proof of Correctness

vi [t ]: state of fault-free node i at the end of iteration t
v[t ]: vector of states of fault-free nodes

Proof ideas
Construct a proper matrix M[t ] such that

v[t ] = M[t ]v[t − 1].

Then
v[t ] = (M[t ]M[t − 1] · · ·M[0]) v[0]

When G(V, E) satisfies Condition NC,

lim
t

M[t ]M[t − 1] · · ·M[0] = M∗ = 1 · πT .
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Matrix Construction

Recall that

vi [t ] =
1

|Mi [t ]−Mis[t ]−Mil [t ]|
∑

m∈Mi [t]−Mis[t]−Mil [t]

wm (1)

To go from (1) to

v[t ] = M[t ]v[t − 1]

...
Messages are collected over the G`

Update graph is a subgraph of (GF )`

Weights reallocation

Condition NC guarantees that there exists a unique source
component in the update graph.
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Connection with existing work under unbounded path
length

When G is undirected [Fischer-Lynch-Merritt,PODC85]

Theorem (Undirected Graph)
When ` ≥ `∗, if G is undirected, then n ≥ 3b + 1 and
node-connectivity of G is at least 2b + 1 if and only if G satisfies
Condition NC.



Connection with existing work under unbounded path
length

When G is directed [PODC15: Tseng-Vaidya]
B → A: Set A is influenced by set B if

A ∩ B = ∅
nodes in A collectively have at least b + 1 distinct incoming
neighbors in B



Fault-Tolerant Distributed Optimization
in Multi-Agent Networks



System Goal: Secure Multi-Agent Optimization



Examples

Robotic rendezvous problems.

Parameter estimation in distributed sensor networks:
Regression-based estimates using local sensor
measurements

Large-scale distributed machine learning, where data are
generated at different locations



Outline

Review: Faulty free

Crash failure and Byzantine-resilience

Impossibility results for Byzantine-resilience

Algorithms for Byzantine-resilience

Optimization problem with additional structures
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Model

We consider a network of n agents with node set
V = [1,2, . . . ,n].

Each agent i locally has its own convex objective function
hi(x) : R→ R.

Goal (Failure-Free)
Agents want to cooperatively minimize

h(x) =
1
n

n∑
i=1

hi(x).

[Nedic and Ozdaglar, 2009], [Duchi et al., 2012], [Tsianos et al.,
2012]



Examples

Robotic rendezvous:
hi (x): agent i ’s cost for rendezvous.
h(x): cost for rendezvous.

Parameter estimation in distributed sensor networks:
Regression-based estimates using local sensor
measurements

Large-scale distributed machine learning, where data are
generated at different locations



Example: Empirical Risk Minimization

Suppose data is collected by different agents

agent j keeps local data {xji , yji}
mj
i=1, j = 1, · · · ,n

Loss function: L, with L(xji , yji , θ)

Without communication: Locally minimizing
fj(θ) :=

∑mj
i=1 L(xji , yji , θ)

With communication: Globally solving ([Nedic and Ozdaglar,
2009], [Duchi et al. 2012], and etc.)

min
θ

1
n

n∑
j=1

fj(θ) =
1
n

n∑
j=1

mj∑
i=1

L(xi , yi , θ)



Algorithm (fault-free) [Nedic and Ozdaglar, 2009]

Compute h′i (xi [t ]);

Send xi [t ] to nodes in N+
i – the outgoing neighbors of i ;

Receive xj [t ] from all its incoming neighbors N−i ;

xi [t + 1]← 1
|N−i |+ 1

 ∑
j∈N−i ∪{i}

xi [t ]

− λ[t ]h′i (xi [t ])

= xi [t ]− λ[t ]h′i (xi [t ]) +
1

|N−i |+ 1

∑
j∈N−i

(
xj [t ]− xi [t ]

)
It can be shown that for sufficient large t , we have for each i ∈ V

xi [t + 1] ≈ xi [t ]− λ[t ]
1
n

n∑
i=1

h′i (xi [t ]) ,
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Fault-Tolerant Multi-Agent Optimization

Fault models: Crash and Byzantine faults

System models: Synchronous and asynchronous systems

When f > 0, it is impossible to solve h(x) = 1
n
∑n

i=1 hi(x).

Question
What should be the global objectives?

Observations:

1 Only available and untampered hi should be used.
2 Sufficient number of hi ’s should be used.
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Assumptions on Local cost functions

hi : R→ R

convex, and continuously differentiable

optimal set is non-empty and compact (i.e., bounded and
closed)

bounded gradient

L–Lipschitz gradients



Global Objective: Crash Resilience – I

Up to f agents may crash – their local functions unavailable

Goal (f > 0, crash fault)
Non-faulty agents want to collaboratively minimize an unknown
function of the form

h(x) =
∑
i∈V

αihi(x),

where αi ≥ 0,
∑n

i=1 αi = 1, and depend on the failure pattern of
the faulty agents.

When F = {1, . . . , f} and crash at time t = 0, it holds that
αi = 0 for i = 1, . . . , f .

Intuitively speaking, the coefficients αi ’s capture the utilization
level of individual measurements.



Quality of the Output

Only convex combination: multiple output candidates

How to measure the quality of an output candidate?

(β, γ)–admissibility of a given α (β > 0, and γ ∈):

At least γ elements of α are lower bounded by β

Example: α = { 1
10 ,

3
10 , 0, 0, 4

10 ,
2
10 , 0}

is ( 1
10 ,4)–admissible

not ( 2
10 ,4)–admissible
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Global Objective: Crash Resilience – II

Introducing two parameters β ≥ 0 and γ ≥ 0.

Non-faulty agents aim to minimize an unknown function

h(x) =
∑
i∈V

αihi(x),

such that

∀i ∈ V, αi ≥ 0,
∑
i∈V

αi = 1,

and
∑
i∈V

1(αi ≥ β) ≥ γ.

[Su and Vaidya,arxiv’15c]
1 Synchronous system: αi = αj ≥ 1

n for all i , j ∈ N .
2 Asynchronous system: αi ≥ 1

n for all i ∈ N .



Global Objective: Byzantine Resilience

Up to f agents may be Byzantine – they can hide and
adaptively lie about their local functions

Refined Goal (f > 0, Byzantine fault) for β ≥ 0 and γ ≥ 0
Non-faulty agents want to collaboratively minimize an unknown
function of the form

h(x) =
∑
i∈N

αihi(x),

such that

∀i ∈ N , αi ≥ 0,
∑
i∈N

αi = 1,

and
∑
i∈N

1(αi ≥ β) ≥ γ.

Henceforth, we consider synchronous system.
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Impossibility Results

Theorem 1 [S. and Vaidya,TAC’20]
When f > 0, it is impossible to minimize

h(x) =
∑
i∈N

1
|N |

hi(x).

Intuition: Need to identify which agents are Byzantine.

Impossible under data heterogeneity!!!

Theorem 2 [S. and Vaidya,TAC’20]

It is impossible to achieve β ≥ ε and γ > |N | − f regardless of
the choice of ε > 0.

Remark: Byzantine resilience comes at a price of sacrificing
the information collected by at least f non-faulty agents
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Algorithm 1: Broadcasting local functions

Step 1: Perform Byzantine broadcast for each of hj(x).

The n local functions collected by agent j

Step 2: If there exists x0 ∈ R such that∑
i∈A(x)−F∗1 (x)

h′i (x) +
∑

i∈B(x)−F∗2 (x)
h′i (x) = 0

then output x̃ = x0; otherwise, output x̃ =⊥.

On F ∗1 (x) and F ∗2 (x): F ∗1 largest f (if any) positive gradient, F ∗2
smallest f (if any) negative gradient



Algorithm 1: Broadcasting local functions

Step 1: Perform Byzantine broadcast for each of hj(x).

The n local functions collected by agent j

Step 2: If there exists x0 ∈ R such that∑
i∈A(x)−F∗1 (x)

h′i (x) +
∑

i∈B(x)−F∗2 (x)
h′i (x) = 0

then output x̃ = x0; otherwise, output x̃ =⊥.

Theorem 3[S. and Vaidya, TAC’20, arXiv 2015’a]
When n > 3f , Algorithm 1 achieves the refined goal with
β = max{1

n ,
1

2(|N |−f )} and γ = |N | − f .



Algorithm 1: Alternative Interpretation

For each x ∈ R, let

H(x) =
∑

i∈A(x)−F∗1 (x)

h′i (x) +
∑

i∈B(x)−F∗2 (x)

h′i (x) .

Theorem

For given N and F , there exists a convex and differentiable
function H (·) such that H′ (x) = H (x).

Essentially, the above algorithm outputs an optimum of the
following constrained convex optimization problem, where
Cov (∪i∈NXi) ⊆ [c,d ]:

min H (x)

s.t . x ∈ [c,d ].



Algorithm 2: Gradient Broadcast + Admissibility Check

Algorithm 2: Agent j for j ∈ N
Perform Byzantine consensus on initial estimates xj [0]’s.
Compute h′j

(
xj [t ]

)
, and perform Byzantine broadcast of

h′j
(
xj [t ]

)
to all the agents.

Admissibility check on received gradients {g1[t ], . . . ,gn[t ]}.
Trim away extreme gradients. Let R∗j [t ] be the agents
whose gradients have not been removed.

xj [t + 1]← xj [t ]− λ[t ]
∑

i∈R∗[t] gi [t ].

Admissibility check: check whether the received gradients can
be interpreted as the gradient of some convex functions.
Diminishing stepsizes: λ[t ]→ 0,

∑∞
t=0 λ[t ] =∞ and∑∞

t=0 λ
2[t ] <∞.
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Correctness of Algorithm 2: Proof Ideas

1 Identical estimates at non-faulty agents: xj [t ] = xi [t ], for
i , j ∈ N . Let x [t ] = xj [t ].

2 Admissibility check force the faulty agents behave as if its
local function is admissible. Thus agent i keeps local
function hi(·) for each i ∈ V.

3 Let H(·) be defined as before, i.e.,

H(x) =
∑

i∈A(x)−F∗1 (x)

h′i (x) +
∑

i∈B(x)−F∗2 (x)

h′i (x) .

4 Indeed,

x [t + 1] = x [t ]− λ[t ]
∑

i∈R∗[t]

gi [t ]

= x [t ]− λ[t ]H(x [t ]).



Algorithm 2: Alternative Interpretation

Since

x [t + 1] = x [t ]− λ[t ]
∑

i∈R∗[t]

gi [t ]

= x [t ]− λ[t ]H(x [t ]),

The agents in the network are collaboratively solving

min H (x)

s.t . x ∈ [c,d ],

using gradient descent method.



So far ...

Byzantine broadcast communication is costly.

Fully distributed algorithm exists, in which only local
communication and local computation is needed.

In particular, at each iteration t , agent j computes its local
gradient at xj [t ] and sends both xj [t ] and its gradient to the
other agents.

Trim over received estimates xi [t ]’s and over
received gradients, respectively.



Algorithm 3: An Optimal Fully Distributed Algorithm

Theorem (S. and Vaidya,PODC’16)
There exists a distributed algorithm whose output admits an α
that is (β, γ)–admissible with γ = |N | − f and β = 1

2(|N |−f ) .

γ = |N | − f is optimal [S. and Vaidya,16 ACC]

β = 1
2(|N |−f ) is “off" by a factor of 2

– observing that the largest possible β is 1
|N |−f

Communication network: complete graph
Can be extended to incomplete graphs [S.and
Vaidya,arXiv’15d]
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Assumptions

Local cost functions

hi : R→ R
convex, and continuously differentiable
optimal set is non-empty and compact (i.e., bounded and
closed)
bounded gradient
L–Lipschitz gradients



SBG: Synchronous Byzantine Gradient Method

gradient descent method + iterative Byzantine approximate
consensus

Each agent i maintains local estimate xi [t ]

SBG (In each iteration)

Send estimate xi [t ] and gradient h′i (xi [t ]) to all agents;

xi [t + 1] = Trim{x [t ]}− λ[t ]×Trim{h′[t ]}

Trim: drop smallest f , largest f values, and take the mean of the
remained values

Trim gradients: impose structure
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Proof Outline

i Consensus:

lim
t

(
xi [t ]− xj [t ]

)
= 0, for all i , j ∈ N

ii Optimality:

xi [t ] is asymptotically
(

1
2(|N | − f )

, |N | − f
)

–admissible

Asymptotically xi [t ] minimizes
∑

j∈N αjhj(x) such
that
α is (β, γ)–admissible with γ = |N | − f and β =

1
2(|N |−f ) .



Characterization of Desired Outputs

Valid function p:
p(x) =

∑
i∈N αihi(x)

weight vector α is ( 1
2(|N |−f ) , |N | − f )–admissible

Set Y : all minimizers of valid functions

Lemma

Set Y is convex and closed.

Optimality:
xi [t ] is asymptotically

(
1

2(|N |−f ) , |N | − f
)

–admissible

⇐⇒ lim
t

Distance (xi [t ],Y ) = 0
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A Variant of Gradient Decent Update Rule
Update rule: xi [t + 1] = Trim{x [t ]} − λ[t ] · Trim{h′[t ]}

Lemma

Trim{h′[t ]} at agent i =
∑

j∈N α
i
j [t ]h

′
j (xj [t ]),

where αi [t ] is
(

1
2(|N |−f ) , |N | − f

)
–admissible

xi [t + 1] = Trim{x [t ]} − λ[t ] ·
∑
j∈N

αi
j [t ]h

′
j (xj [t ])

≈ xi [t ]− λ[t ] ·
∑
j∈N

αi
j [t ]h

′
j(xi [t ])

= xi [t ]− λ[t ] · p′t ,i(xi [t ])

∑
j∈N α

i
j [t ]h

′
j (xi [t ]): the gradient of a valid function pt ,i
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Remaining Optimality Proof

“gradient descent analysis" on the auxiliary {z[t ]}∞t=0 such
that

z[t ] = xjt [t ]
where jt ∈j∈N Distance

(
xj [t ],Y

)
.

Intuitions behind optimality:
The gradient of any valid function pushes xi [t ] towards Y

Since Y is convex, xi [t ] is asymptotically trapped in Y
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Open Problems

General local function: vector inputs
β, γ scale poorly in the input dimension d

Incomplete graphs [S. and Vaidya, TAC’20]: weights might
not be optimal

What if we have additional structures?
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Learning in Multi-Agent Networks

Each agent makes local observations
Communicate with others

Who should be the President? Biden, Trump
What is the object in the sky? Bird, Plane, Missile,
Meteor
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Learning over Multi-Agent Network (contd)

Local observations: partially informative

Collaboration is necessary!

Some agents are adversarial: prevent the truth being
learned

Goal: Non-faulty agents collaboratively learn the
truth
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Problem Formulation

n agents in a directed network

θ∗: unknown true state

m possible states: θ1, . . . , θm

si
t ∼ `iθ∗ : private signals of agent i at time t
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Problem Formulation (contd)

Local indistinguishability

Byzantine fault model: Up to f agents suffering Byzantine
faults

Goal: Non-faulty agents collaboratively learn θ∗
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Local Information

KL divergence DKL(`iθj
‖ `iθk

) = 0 iff
the two distributions identical

⇒ θj and θk indistinguishable
to agent i

DKL(l ielephant ‖ l itree) = 0

⇒ elephant and tree look alike to agent i

DKL(l ielephant ‖ l itree) > 0

⇒ elephant not confused with a tree by agent i
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Global Information

∑
i DKL(`iθ∗ ‖ `iθ) 6= 0 for all θ 6= θ∗

⇒ Collectively agents can distinguish θ∗ (elephant) from
θ 6= θ∗

When all agents cooperate, this suffices to learn θ∗

Not sufficient with Byzantine agents
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Our Contributions [S. and Vaidya, DC’18]

1 Sufficient condition on l iθ ’s for learning with Byzantine faults

2 First distributed learning algorithm robust to Byzantine
faults

3 Proved fast convergence of the proposed algorithm

4 Recent results: A light-weight algorithm
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Local Information v.s. Global Information

Local information:

DKL(`iθ∗ ‖ `iθ): amount of info. at agent i
to distinguish θ∗ , θ

DKL(`i
θ∗ ‖ `i

θ) = 0: non-informative
DKL(`i

θ∗ ‖ `i
θ) 6= 0: informative

Global information:∑
i DKL(`iθ∗ ‖ `iθ): amount of info. globally available∑

i DKL(`i
θ∗ ‖ `i

θ) = 0 : collectively non-informative∑
i DKL(`i

θ∗ ‖ `i
θ) 6= 0 : collectively informative

Question: Will collectively non-informative sufficient to learn
θ∗ ?



Network Identifiability Condition

every agent is cooperative: “collectively informative" is
sufficient, i.e., θ∗ identifiable if∑

i

D(`iθ∗ ||`iθ) 6= 0, ∀ θ 6= θ∗

Byzantine faults: “collectively informative" is NOT
sufficient !

Information propagation obstructed by Byzantine agents

Stronger network identifiability is required !!!



Network Identifiability Condition

every agent is cooperative: “collectively informative" is
sufficient, i.e., θ∗ identifiable if∑

i

D(`iθ∗ ||`iθ) 6= 0, ∀ θ 6= θ∗

Byzantine faults: “collectively informative" is NOT
sufficient !

Information propagation obstructed by Byzantine agents

Stronger network identifiability is required !!!



Network Identifiability Condition

every agent is cooperative: “collectively informative" is
sufficient, i.e., θ∗ identifiable if∑

i

D(`iθ∗ ||`iθ) 6= 0, ∀ θ 6= θ∗

Byzantine faults: “collectively informative" is NOT
sufficient !

Information propagation obstructed by Byzantine agents

Stronger network identifiability is required !!!



Contributions

First learning algorithm robust to Byzantine attacks:

each non-faulty agent learns the true state almost surely

beliefs on the wrong state decrease O(exp(−C̃t2))

Identify sufficient condition on the global identifiability

When f = 0 (failure-free): O(exp(−C̃t2))

Low complexity variation
Complexity: O(m2n log n)

Minimal global identifiability
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Related Work

Failure-free
Bayesian learning: [Banerjee92, Gale03, Acemoglu11]

high complexity

Non-Bayesian learning [Bala98, Acemoglu10, Golub10,
Jadbabaie12]

Consensus-based models [Jadbabaie12]
[Nedic, Olshevsky, Uribe, TAC’17]



Belief Vectors

µi
t = [µi

t (θ1), . . . , µi
t (θm)]:

approximate belief vector

µi
0: initial belief

Goal: limt µ
i
t (θ
∗)1

θ1 elephant
θ2 spear
θ3 snake
θ4 curtain
θ5 wall
θ6 tree
θ7 rope

µi
t (elephant) 0.3
µi

t (spear) 0.3
µi

t (snake) 0.1
µi

t (curtain) 0.1
µi

t (wall) 0.1
µi

t (tree) 0.05
µi

t (rope) 0.05
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Our Algorithm
Network: Alice, Bob, Charlie and David

Update

µA
t+1(θ)

∝

reconcile{µA
t (θ), µB

t (θ), µC
t (θ), µD

t (θ)} × `θA(sA
1 , · · · , sA

t+1)

`θA(sA
1 , · · · , sA

t+1):
local history summary
easy computation:
`θA(sA

1 , · · · , sA
t+1) = `θA(sA

1 , · · · , sA
t )`θA(sA

t+1)
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Information Reconciliation

Update

µA
t+1(θ) ∝ reconcile{µA

t (θ), µB
t (θ), µC

t (θ), µD
t (θ)} ×

`θA(sA
1 , · · · , sA

t+1)

1 malicious messages

2 beliefs can completely biased

3 need to remove “outliers"

Byzantine consensus: Trimming away “outliers" + averaging
[Mendes&Herlihy 2013, Vaidya&Garg 2013, Vaidya 2014]

Byzantine consensus + local learning
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Info. propagation inherits randomness from local ob-
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Existing analysis does not applicable
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Info. propagation inherits randomness from local ob-
servations
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Convergence Results

Theorem
Under some network identifiability condition, for θ 6= θ∗,

lim
t
µt

i (θ
∗)1

Corollary (Convergence rate)

µi
t (θ) ≤ exp

(
−Ct2

)
a.s. (C > 0)



Sufficient Network Identifiability Condition

Communication network not reflect the real info. flow
Information propagation interfered by Byzantine agents

Effective communication network

(multiple)

Information source agents S: propagate info. out

Observations of agents to be collectively informative, i.e.,∑
i∈S

DKL
(
`i
θ∗ ‖ `i

θ

)
6= 0 ∀θ 6= θ∗ (2)

Sufficient Network Identifiability Condition
For every effective communication network, (2) is satisfied



Sufficient Network Identifiability Condition

Communication network not reflect the real info. flow
Information propagation interfered by Byzantine agents

Effective communication network

(multiple)

Information source agents S: propagate info. out

Observations of agents to be collectively informative, i.e.,∑
i∈S

DKL
(
`i
θ∗ ‖ `i

θ

)
6= 0 ∀θ 6= θ∗ (2)

Sufficient Network Identifiability Condition
For every effective communication network, (2) is satisfied



Sufficient Network Identifiability Condition

Communication network not reflect the real info. flow
Information propagation interfered by Byzantine agents

Effective communication network (multiple)
Information source agents S: propagate info. out

Observations of agents to be collectively informative, i.e.,∑
i∈S

DKL
(
`i
θ∗ ‖ `i

θ

)
6= 0 ∀θ 6= θ∗ (2)

Sufficient Network Identifiability Condition
For every effective communication network, (2) is satisfied



Sufficient Network Identifiability Condition

Communication network not reflect the real info. flow
Information propagation interfered by Byzantine agents

Effective communication network (multiple)
Information source agents S: propagate info. out

Observations of agents to be collectively informative, i.e.,∑
i∈S

DKL
(
`i
θ∗ ‖ `i

θ

)
6= 0 ∀θ 6= θ∗ (2)

Sufficient Network Identifiability Condition
For every effective communication network, (2) is satisfied



Comparison with Existing Failure-Free Algrorithm

Our algorithm
Update rule:
µi

t+1(θ) ∝ averaging{µj
t (θ), j ∈ Ii} × `θi (si

1, . . . , s
i
t+1)

Convergence rate: µi
t (θ) ≤ exp

(
−Ct2)

Existing algorithm [Jadbabaie 12, Shahrampour 15, Nedic 15]

Update rule: µi
t+1(θ) ∝ averaging{µj

t (θ), j ∈ Ii} × `θi (si
t+1)

Convergence rate: µi
t (θ) ≤ exp

(
−C̃t

)



Low Complexity Variant

Computation complexity per iteration: High

Network identifiability: Not minimal

Low Complexity Variant

m-ary hypo. testing ⇒ m(m − 1) ordered binary hypo.
testing

For each pair θ1 and θ2, update the likelihood ratio of θ1
over θ2

Complexity: O(m2n log n)

Minimal network identifiability
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Finite-time Guarantees for Byzantine-Resilient
Distributed State Estimation with Noisy

Measurements



Problem Formulation

State estimation: A static state θ∗ ∈ Rd that each of the
non-Byzantine agent is interested in learning.

Constraints: an agent can collect partial and noisy
measurements only.

(Linear observation model) For each agent, its local
measurement yi(t) at time t is generated as

yi (t) := Hiθ
∗ + wi (t),

where
(1) Hi ∈ Rni×d , where ni � d , is the local observation matrix
(2) wi (t)’s are the observation noises that are zero mean and

bounded. The observation noises across agents are
independent.

Applications: IoT, machine learning, wireless networks, sensor networks,
and robotic networks



Problem Formulation

State estimation: A static state θ∗ ∈ Rd that each of the
non-Byzantine agent is interested in learning.

Constraints: an agent can collect partial and noisy
measurements only.

(Linear observation model) For each agent, its local
measurement yi(t) at time t is generated as

yi (t) := Hiθ
∗ + wi (t),

where
(1) Hi ∈ Rni×d , where ni � d , is the local observation matrix
(2) wi (t)’s are the observation noises that are zero mean and

bounded. The observation noises across agents are
independent.

*The local observation of a Byzantine agent is well-defined.



Related Work

Adversary-resilient State Estimation
There is a rich line of work on the adversary-resilient state
estimation problem wherein the existence of a fusion
center is assumed. [Kosut-Jia-Thomas-Tong ’11] [Kim and
Poor ’11] [Sou-Sandberg-Johansson ’13] . . .

Adversary-resilient Distributed State Estimation
[Sundaram-Hadjicostis ’11] [Chen-Kar-Moura ’18 a, b,c,d,e]
[Mitra-Sundaram ’18] [Mitra-Ghawash-Sundaram-Abbas ’21]. . .

Our focus:
Noisy measurements, partially observable local matrix, and
finite-time guarantees.
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A Distributed Optimization Prospective: Asymptotic
local function

For each agent i ∈ V, define its asymptotic local function
fi : Rd → R as

fi(x) :=
1
2
E
[
‖Hix − yi‖22

]
,

where the expectation of fi(x) is taken over the randomness of
wi .
1* fi is well-defined for each agent regardless of whether it is

a good agent or a Byzantine agent

2* Since the distribution of wi is unknown to agent i , at any
finite t , function fi is not accessible to agent i .



A Distributed Optimization Prospective: Finite-time
local function

The agent has access to the finite-time or empirical local
function fi,t defined as

fi,t (x) :=
1
2t

t∑
s=1

‖Hix − yi(s)‖22 ,

whose gradient at x is

∇fi,t (x) =
1
t

t∑
s=1

H>i (Hix − yi(s))

= H>i Hi(x − θ∗)− H>i
1
t

t∑
s=1

wi(s).



A First Thought?

Question: Combine the local gradient descent with
multi-dimensional Byzantine resilient consensus?

The computation complexity of the relevant consensus
component is prohibitively high

which typically relies on using Tverberg points

assured convergence rate scales poorly in d



Proposed Algorithm

High-level idea:
Each good agent iteratively aggregates the received messages
by, for each coordinate, discarding the largest b and the
smallest b values, and averaging the remaining.

Local gradient descent: Agent i first computes the noisy
local gradient ∇fi,t (xi(t − 1)), and performs local gradient
descent to obtain zi(t), i.e.,

zi(t) = xi(t − 1)−∇fi,t (xi(t − 1)).



Proposed Algorithm (continued)

Information exchange: It exchanges zi(t) with other agents
in its local neighborhood. Recall that mij(t) ∈ Rd is the
message sent from agent i to agent j at time t . It relates to
zi(t) as follows:

mij(t) =

{
zi(t) if i ∈ (V/A);

? if i ∈ A,

where ? denotes an arbitrary value.
Robust aggregation: For each coordinate k = 1, . . . ,d , the
agent computes the trimmed mean to obtain xi(t).



Main results: Complete graphs
for ease of illustration: Applicable to computer networks and
wireless networks with message forwarding

Lemma

For each iteration t, each good agent i ∈ V/A, and each k,
there exist coefficients

(
βk

ij (t), j ∈ V/A
)

such that

xk
i (t) =

∑
j∈V/A β

k
ij (t)

〈
zj(t),ek

〉
;

0 ≤ βk
ij (t) ≤ 1

φ−b for all j ∈ V/A and
∑

j∈V/A β
k
ij (t) = 1,

where φ = |V/A|.

Observations
The update of xi uses the information provided by the good
agents only;
each of the good agent has limited impact on xi ;

Remaining analysis is still non-trivial because(
βk

ij (t), j ∈ V/A
)
6=
(
βk ′

ij (t), j ∈ V/A
)

for k 6= k ′
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Main results: Complete graphs

Assumption 1
For all k = 1, · · · ,d , we have that

1
φ− b

∑
j∈V/A

∥∥∥(I− H>j Hj

)
ek

∥∥∥
1
< 1.

Note that it can well be the case that∥∥∥(I− H>j Hj

)
ek

∥∥∥
1
≥ 1 for some good agents.

None of the agents are required to satisfy∥∥∥(I− H>j Hj

)
ek

∥∥∥
1
< 1 simultaneously for all k = 1, · · · ,d .



Main theorem

Let ρ , maxk :1≤k≤d

∑
j∈V/A

∥∥∥(I−H>j Hj

)
ek

∥∥∥
1

φ−b , and
C0 , maxi∈V/A ‖Hi‖2.

Theorem
Suppose Assumption 1 holds and the graph is complete. Then

max
i∈V/A

‖xi(t)− θ∗‖∞
a.s.→ 0.

Moreover, with probability at least
1− φ exp

(
−ε2(1−ρ)2t

8C2

)
, it holds that

max
i∈V/A

‖xi(t)− θ∗‖∞ ≤ ρ
t max

i∈V/A
‖xi(0)− θ∗‖∞

+ C0

 ∑
i∈V/A

√
trace(Σj)

 t−1∑
m=1

ρm
√

t −m
+ φε.



Main results: Incomplete graphs

Theorem
Under the assumption that ensures Byzantine consensus with
scalar inputs, if an assumption analogous to Assumption 1
holds, then any given δ ∈ (0,1), any ε > 0, and

t ≥ Ω
(

n2/ε2
)(

log
1
δ

+ log n
)
,

with probability at least 1− δ, it holds that

max
i∈V/A

‖xi(t)− θ∗‖∞ ≤ ρ̃
t max

i∈V/A
‖xi(0)− θ∗‖∞

+ C̃0n
t−1∑
m=1

ρ̃m
√

t −m
+ ε,

where ρ̃ ∈ (0,1).



Numerical Examples: Energy Efficiency Data Set
Regression dataset on UCI Machine Learning Repository1:
In this dataset, the vector θ∗ ∈ R8, including eight features.
We consider a network of |V \ A| = 160 agents. Each
agent i observes only one feature corrupted by a Gaussian
noise N (0,0.25). Also, each agent i is connected to 40
agents i − 20, i − 19, . . . , i + 19, i + 20.
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1https://archive.ics.uci.edu/ml/datasets/Energy+efficiency



What we discussed

Review: Faulty free

Crash failure and Byzantine-resilience

Impossibility results for Byzantine-resilience

Algorithms for Byzantine-resilience

Optimization problem with additional structures
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