Resilient distributed machine learning： Secure multi－agent federation

Lili Su（Northeastern，ECE）

CCAC21

2021

Machine Learning

Machine Learning

Machine Learning

Machine Learning

Large－scale Machine Learning

Challenges

Challenges

Data heterogeneity: data collected at different devices might generate from different distributions

Challenges

Data heterogeneity: data collected at different devices might generate from different distributions

Low local data volume: a device has limited data collection capability

Challenges

Data heterogeneity：data collected at different devices might generate from different distributions

Low local data volume：a device has limited data collection capability

Privacy：data moving constraints

Challenges

Data heterogeneity: data collected at different devices might generate from different distributions

Low local data volume: a device has limited data collection capability

Privacy: data moving constraints

Lack of centralized data fusion center: data volume is so high that not a single machine is capability of heading of data fusion task

Challenges

Data heterogeneity: data collected at different devices might generate from different distributions

Low local data volume: a device has limited data collection capability

Privacy: data moving constraints

Lack of centralized data fusion center: data volume is so high that not a single machine is capability of heading of data fusion task

Security: external adversarial attacks, unstructured system failures, and consistent external disturbance

Challenges

Data heterogeneity: data collected at different devices might generate from different distributions

Low local data volume: a device has limited data collection capability

Privacy: data moving constraints

Lack of centralized data fusion center: data volume is so high that not a single machine is capability of heading of data fusion task

Security: external adversarial attacks, unstructured system failures, and consistent external disturbance

Popular System Architectures

- Master-slave

Master: the cloud; Slaves: mobile devices

Popular System Architectures

－Master－slave
－Fully distributed

Master：the cloud；Slaves：mobile devices

Fully distributed

Popular System Architectures

- Master-slave
- Fully distributed

Master: the cloud; Slaves: mobile devices

- Hierarchical

Fully distributed

Our focus

Data heterogeneity: data collected at different devices might generate from different distributions

Master-slave
Low local data volume: a device has limited data collection capability

Privacy: data moving constraints
Fully distributed
Lack of centralized data fusion center: data volume is so high that not a single machine is capability of heading of data fusion task
Hierarchical
Security: external adversarial attacks, unstructured system failures, and consistent external disturbance

Why adversary－resilient？

On the necessity of adversary-resilient?

Security: external adversarial attacks, unstructured system failures, and consistent external disturbance

On the necessity of adversary－resilient？

Security：external adversarial attacks，unstructured system failures，and consistent external disturbance

On the necessity of adversary－resilient？

Security：external adversarial attacks，unstructured system failures，and consistent external disturbance

On the necessity of adversary-resilient?

Security: external adversarial attacks, unstructured system failures, and consistent external disturbance

On the necessity of adversary－resilient？

Security：external adversarial attacks，unstructured system failures，and consistent external disturbance

On the necessity of adversary－resilient？

Security：external adversarial attacks，unstructured system failures，and consistent external disturbance

Remainder of this workshop

(1) Byzantine consensus

- Ensures secure and effective information fusion while using local communication only
(2) Byzantine-resilient distributed optimization
- Fundamental limits
- Optimal algorithms
(3) Byzantine-resilient light-weight social learning
- The first provably secure algorithm
- A light-weight variant

Remainder of this workshop

（1）Byzantine consensus
－Ensures secure and effective information fusion while using local communication only
（2）Byzantine－resilient distributed optimization
－Fundamental limits
－Optimal algorithms
（3）Byzantine－resilient light－weight social learning
－The first provably secure algorithm
－A light－weight variant

Byzantine Consensus

Communication network

- a collection of n agents communicating with each other through a network $G(\mathcal{V}, \mathcal{E})$, where $\mathcal{V}=\{1, \cdots, n\}$ and \mathcal{E} denote the set of agents and communication links, respectively.

- Among the n agents, an unknown subset of agents might be compromised and behave adversarially.

Fault/Adversary Model - I

Byzantine Fault Model: There exists a system adversary that can choose up to b out of n agents to compromise and control. Let $\mathcal{A} \subseteq \mathcal{N}$ be the set of compromised agents, referred to as Byzantine agents.
"The Byzantine Generals Problem", LAMPORT, SHOSTAK, and PEASE

- The adversary has complete knowledge of the network
- the local program that each good agent is supposed to run;
- the current status of the system;
- running history of the system.

Fault/Adversary Model - II

The Byzantine agents can

- collude with each other;
- deviate from their pre-specified local programs to arbitrarily misrepresent information to the good
 agents;
- mislead each of the good agents in a unique fashion, i.e., letting $m_{i j}(t) \in \mathbb{R}^{d}$ be the message sent from agent $i \in \mathcal{A}$ to agent $j \in \mathcal{V} \backslash \mathcal{A}$ at time t, it is possible that $m_{i j}(t) \neq m_{i j^{\prime}}(t)$ for $j \neq j^{\prime} \in \mathcal{V} \backslash \mathcal{A}$.

Reaching agreement in the presence of Byzantine faults is far from trivial.

Example: For binary consensus, even in complete graphs, no distributed algorithms can tolerate more than $1 / 3$ of the agents to be Byzantine.
[Lamport, Shostak, and Pease, 82]

Reaching agreement in the presence of Byzantine faults is far from trivial.

Example: For binary consensus, even in complete graphs, no distributed algorithms can tolerate more than $1 / 3$ of the agents to be Byzantine.
[Lamport, Shostak, and Pease, 82]

The reached agreement could be biased and the amount of bias is out of the control of the good agents.

Background-I: Byzantine Fault-Tolerance

- proposed in [Pease-Shostak-Lamport, J. ACM80']

Background－I：Byzantine Fault－Tolerance

－proposed in［Pease－Shostak－Lamport，J．ACM80＇］
－FLP impossibility result：Asynchronous Byzantine consensus is impossible to solve（FLP impossibility）
［Fischer－Lynch－Peterson，J．ACM85＇］

Background-I: Byzantine Fault-Tolerance

- proposed in [Pease-Shostak-Lamport, J. ACM80']
- FLP impossibility result: Asynchronous Byzantine consensus is impossible to solve (FLP impossibility)
[Fischer - Lynch - Peterson, J. ACM85']
- Approximate Byzantine consensus: Relaxing the necessity of agree with each other exactly [Dolev et al., J. ACM86']
- Initially proposed for asynchronous systems, extended to synchronous systems

Background－II

n ：the total \＃of agents；
b ：the maximal number of Byzantine（i．e．，compromised）agents
－Communication with message relay：
－Networks with bidirectional links［Fisher－Lynch－Paterson， PODC85＇］
－$n \geq 3 b+1$ ，and $2 b+1$ node connectivity
－Networks with directional links［Tseng－Vaidya，PODC15＇］
－based on four sets nodes partition
－Local communication：an agent can only communicate with its immediate neighbors
［Vaidya－Tseng－Liang，PODC＇12］，［LeBlanc et al．，HiCoNS＇12］

Questions Answered

The impact of communication range:

- Will there be a tight topology condition over G ?
- If yes, how does the communication range affect the tight condition?
- Is there any simple algorithm that works under the tight condition?

Model

－Synchronous system
－Communication network：arbitrary directed graph
－Node i can send message to node j ：if node j is reachable via at most ℓ hops．
－A message is modeled as a tuple $m=(w, P)$ ．
－Messages delivered by the network layer．
－Up to b Byzantine faults
－Tamper messages value if it belongs to an admissible communication path，leaving message path unchanged．

Model

Approximate Consensus：Correctness Conditions

－ϵ－Agreement
－Validity：Outputs are within the range of inputs at fault－free nodes．
－Termination

Iterative Structure

Each fault-free node i maintains a state v_{i} : initial state $=$ input

Algorithm Structure: For $t \geq 1$ and node i,

(1) Transmit step.
(2) Receive step. Let $\mathcal{M}_{i}[t]$ be the set of messages that node i in this step.
(3) Update step: Node i updates its state as

$$
v_{i}[t]=Z_{i}\left(\mathcal{M}_{i}[t]\right) .
$$

Iterative Structure

Each fault-free node i maintains a state v_{i} : initial state $=$ input

Algorithm Structure: For $t \geq 1$ and node i,

(1) Transmit step.
(2) Receive step. Let $\mathcal{M}_{i}[t]$ be the set of messages that node i in this step.
(3) Update step: Node i updates its state as

$$
v_{i}[t]=Z_{i}\left(\mathcal{M}_{i}[t]\right) .
$$

- Minimal memory across iterations

Iterative Structure

Each fault-free node i maintains a state v_{i} : initial state $=$ input

Algorithm Structure: For $t \geq 1$ and node i,

(1) Transmit step.
(2) Receive step. Let $\mathcal{M}_{i}[t]$ be the set of messages that node i in this step.
(3) Update step: Node i updates its state as

$$
v_{i}[t]=Z_{i}\left(\mathcal{M}_{i}[t]\right) .
$$

Question: Which directed graphs can solve iterative approximate Byzantine consensus?

Results

ℓ-restricted connectivity

Definition (ℓ-restricted connectivity)

Suppose that $W \neq$ is a set of a node and that $x \notin W$. A node set S_{ℓ} with $x \notin S_{\ell}$ is called an ℓ-restricted (W, x) cut if the deletion of S_{ℓ} disconnects all (W, x)-paths of length up to ℓ. The ℓ-restricted (W, x) connectivity, denoted by $\kappa_{\ell}(W, x)$ is the size of the smallest ℓ-restricted (W, x) cut.

ℓ-restricted connectivity

Definition (ℓ-restricted connectivity)

Suppose that $W \neq$ is a set of a node and that $x \notin W$. A node set S_{ℓ} with $x \notin S_{\ell}$ is called an ℓ-restricted (W, x) cut if the deletion of S_{ℓ} disconnects all (W, x)-paths of length up to ℓ. The ℓ-restricted (W, x) connectivity, denoted by $\kappa_{\ell}(W, x)$ is the size of the smallest ℓ-restricted (W, x) cut.

Node i is influenced by W if $\kappa_{\ell}(W, i)>b+1$

Influence Relation

$$
\begin{aligned}
& \kappa_{\ell}(W, i)>b+1 \Longleftrightarrow \\
& \text { untampered message for its state update. }
\end{aligned}
$$

Influence Relation

$$
\begin{aligned}
& \kappa_{\ell}(W, i)>b+1 \Longleftrightarrow \\
& \\
& \text { node } i \text { is able to utilize at least one } \\
& \text { untampered message for its state update. }
\end{aligned}
$$

Node i is influenced by W

Influence Relation

$$
\begin{aligned}
& \kappa_{\ell}(W, i)>b+1 \Longleftrightarrow \\
& \\
& \text { node } i \text { is able to utilize at least one } \\
& \text { untampered message for its state update. }
\end{aligned}
$$

Node i is influenced by W

Influence Relation

$$
\begin{aligned}
& \kappa_{\ell}(W, i)>b+1 \Longleftrightarrow \\
& \\
& \text { node } i \text { is able to utilize at least one } \\
& \text { untampered message for its state update. }
\end{aligned}
$$

Node i is influenced by W

Influence Relation

$$
\begin{aligned}
& \kappa_{\ell}(W, i)>b+1 \Longleftrightarrow \\
& \\
& \text { untampered message for its state update. }
\end{aligned}
$$

Node i is influenced by W

Necessary Condition: Condition NC

Definition

For nonempty disjoint not sets A and B, we say $A \Rightarrow_{\ell} B$ if and only if there exists a node $i \in B$ such that $\kappa_{\ell}(A, i) \geq b+1$.

Condition NC for a given ℓ

For any node partition L, C, R, F of G such that $L \neq \emptyset, R \neq \emptyset$ and $|F| \leq b$, in G_{F}, at least one of the two conditions below must be true: (i) $R \cup C \Rightarrow_{\ell} L$; (ii) $L \cup C \Rightarrow_{\ell} R$.

Necessary Condition：Condition NC

Condition NC for a given ℓ

For any node partition L, C, R, F of G such that $L \neq \emptyset, R \neq \emptyset$ and $|F| \leq b$ ，in G_{F} ，at least one of the two conditions below must be true：（i）$R \cup C \Rightarrow_{\ell} L$ ；（ii）$L \cup C \Rightarrow_{\ell} R$ ．

Either a golden or a silver node exists！

Necessary Condition: Proof Sketch

Suppose neither a golden nor a silver node exists.
Suppose each node in L has value 1 and each node in R, and C has value 0 .
Byzantine nodes in F tell each node in L their values are all 1 and tell each node in R their values are 0 .

Each node in L does not know whether it should trust $R \cup$ C or F. If it chooses to trust $R \cup C$, then it should output 0 . If it chooses to trust F, then it will update its value closer to 1.

Necessary Condition: Condition NC

Condition NC for $\ell=1$ [Vaidya-Tseng-Liang,PODC'12]

For any node partition L, C, R, F of G such that $L \neq \emptyset, R \neq \emptyset$ and $|F| \leq f$, in the induced subgraph G_{F}, at least one of the two conditions below must be true: (i) there exists a node $i \in L$ such that $\left|(R \cup C) \cap N_{i}^{-}\right| \geq b+1$; (ii) there exists a node $j \in R$ such that $\left|(L \cup C) \cap N_{j}^{-}\right| \geq b+1$.

Necessary Condition NC

Allowing message relay (i.e., $\ell>1$), the network necessary condition is strictly more relax than the one for single-hop message transmission model obtained in [Vaidya-Tseng-Liang, PODC12].

In this system, there are five nodes $p_{1}, p_{2}, p_{3}, p_{4}$ and p_{5}; all communication links are bi-directional; and at most one node can be adversarial, i.e., $b=1$.

Necessary Condition NC

For $I>1$, Condition NC is (in general) weaker than necessary condition derived under single-hop message transmission model obtained in [PODC12: Vaidya-Tseng-Liang].

- This graph does not satisfy the one in [PODC12: Vaidya-Tseng-Liang]
- satisfies our Condition NC for $\ell>1$.

Recalling the iterative structure

Each fault－free node i maintains a state v_{i} ：initial state $=$ input

Algorithm Structure：For $t \geq 1$ and node i ，

（1）Transmit step．
（2）Receive step．Let $\mathcal{M}_{i}[t]$ be the set of messages that node i in this step．
（3）Update step：Node i updates its state as

$$
v_{i}[t]=Z_{i}\left(\mathcal{M}_{i}[t]\right)
$$

Recalling the iterative structure

Each fault－free node i maintains a state v_{i} ：initial state $=$ input

Algorithm Structure：For $t \geq 1$ and node i ，

（1）Transmit step．
（2）Receive step．Let $\mathcal{M}_{i}[t]$ be the set of messages that node i in this step．
（3）Update step：Node i updates its state as

$$
v_{i}[t]=Z_{i}\left(\mathcal{M}_{i}[t]\right) .
$$

For $I=1$ ，［PODC12：Vaidya et al．］and［HiCoNSa12：LeBlanc et al．］both use
＂Adversarial Robust＂update＝trimming＋averaging

Trimming Strategy

- When $\ell=1$: remove extreme received message values largest f values and smallest f values
- When $\ell>1$: ?

Trimming Strategy

－When $\ell=1$ ：remove extreme received message values－ largest f values and smallest f values
－When $\ell>1$ ：？
－message values

Trimming Strategy

－When $\ell=1$ ：remove extreme received message values－ largest f values and smallest f values
－When $\ell>1$ ：？
－message values
－message paths

Trimming Strategy: Removed Messages Set Construction

For each i, the trimmed messages sets $\mathcal{M}_{i s}[t]$ and $\mathcal{M}_{i l}[t]$ are constructed (identified) as

- Let $\mathcal{M}_{i}^{\prime}[t]=\mathcal{M}_{i}[t]-\left\{\left(v_{i}[t-1],(i, i)\right)\right\}$.

Trimming Strategy: Removed Messages Set Construction

For each i, the trimmed messages sets $\mathcal{M}_{i s}[t]$ and $\mathcal{M}_{i l}[t]$ are constructed (identified) as

- Let $\mathcal{M}_{i}^{\prime}[t]=\mathcal{M}_{i}[t]-\left\{\left(v_{i}[t-1],(i, i)\right)\right\}$.
- Sort messages in $\mathcal{M}_{i}^{\prime}[t]$ in an increasing order.

Trimming Strategy: Removed Messages Set Construction

For each i, the trimmed messages sets $\mathcal{M}_{\text {is }}[t]$ and $\mathcal{M}_{i l}[t]$ are constructed (identified) as

- Let $\mathcal{M}_{i}^{\prime}[t]=\mathcal{M}_{i}[t]-\left\{\left(v_{i}[t-1],(i, i)\right)\right\}$.
- Sort messages in $\mathcal{M}_{i}^{\prime}[t]$ in an increasing order.
- Let $\mathcal{M}_{\text {is }}[t]$ be the largest sized subset of $\mathcal{M}_{i}^{\prime}[t]$ such that
(i) for all $m \in \mathcal{M}_{i}^{\prime}[t]-\mathcal{M}_{i s}[t]$ and $m^{\prime} \in \mathcal{M}_{i s}[t]$ we have value $(m) \geq$ value $\left(m^{\prime}\right)$,
(ii) at least f nodes are needed to collectively tamper all messages in $\mathcal{M}_{i s}[t]$.

Trimming Strategy: Removed Messages Set Construction

For each i, the trimmed messages sets $\mathcal{M}_{\text {is }}[t]$ and $\mathcal{M}_{i l}[t]$ are constructed (identified) as

- Let $\mathcal{M}_{i}^{\prime}[t]=\mathcal{M}_{i}[t]-\left\{\left(v_{i}[t-1],(i, i)\right)\right\}$.
- Sort messages in $\mathcal{M}_{i}^{\prime}[t]$ in an increasing order.
- Let $\mathcal{M}_{\text {is }}[t]$ be the largest sized subset of $\mathcal{M}_{i}^{\prime}[t]$ such that
(i) for all $m \in \mathcal{M}_{i}^{\prime}[t]-\mathcal{M}_{i s}[t]$ and $m^{\prime} \in \mathcal{M}_{i s}[t]$ we have value $(m) \geq$ value $\left(m^{\prime}\right)$,
(ii) at least f nodes are needed to collectively tamper all messages in $\mathcal{M}_{i s}[t]$.
- Set $\mathcal{M}_{i l}[t]$ is constructed similarly.

Trimming Strategy: Removed Messages Set Construction

For each i, the trimmed messages sets $\mathcal{M}_{i s}[t]$ and $\mathcal{M}_{i l}[t]$ are constructed (identified) as

- Let $\mathcal{M}_{i}^{\prime}[t]=\mathcal{M}_{i}[t]-\left\{\left(v_{i}[t-1],(i, i)\right)\right\}$.
- Sort messages in $\mathcal{M}_{i}^{\prime}[t]$ in an increasing order.
- Let $\mathcal{M}_{i s}[t]$ be the largest sized subset of $\mathcal{M}_{i}^{\prime}[t]$ such that
(i) for all $m \in \mathcal{M}_{i}^{\prime}[t]-\mathcal{M}_{i s}[t]$ and $m^{\prime} \in \mathcal{M}_{i s}[t]$ we have value $(m) \geq$ value $\left(m^{\prime}\right)$,
(ii) at least f nodes are needed to collectively tamper all messages in $\mathcal{M}_{i s}[t]$.
- Set $\mathcal{M}_{i l}[t]$ is constructed similarly.

Trimming Strategy: Removed Messages Set Construction

For each i, the trimmed messages sets $\mathcal{M}_{i s}[t]$ and $\mathcal{M}_{i l}[t]$ are constructed (identified) as

- Let $\mathcal{M}_{i}^{\prime}[t]=\mathcal{M}_{i}[t]-\left\{\left(v_{i}[t-1],(i, i)\right)\right\}$.
- Sort messages in $\mathcal{M}_{i}^{\prime}[t]$ in an increasing order.
- Let $\mathcal{M}_{\text {is }}[t]$ be the largest sized subset of $\mathcal{M}_{i}^{\prime}[t]$ such that
(i) for all $m \in \mathcal{M}_{i}^{\prime}[t]-\mathcal{M}_{i s}[t]$ and $m^{\prime} \in \mathcal{M}_{\text {is }}[t]$ we have value $(m) \geq$ value $\left(m^{\prime}\right)$,
(ii) at least f nodes are needed to collectively tamper all messages in $\mathcal{M}_{i s}[t]$.
- Set $\mathcal{M}_{i l}[t]$ is constructed similarly.

Both $\mathcal{M}_{\text {is }}[t]$ and $\mathcal{M}_{\text {il }}[t]$ are well-defined.

Algorithm 1

（1）Transmit step．
（2）Receive step．
（3）Update step：

$$
v_{i}[t]=\frac{1}{\left|\mathcal{M}_{i}[t]-\mathcal{M}_{i s}[t]-\mathcal{M}_{i[}[t]\right|} \sum_{m \in \mathcal{M}_{i}[t]-\mathcal{M}_{i s}[t]-\mathcal{M}_{i}[t]} w_{m}
$$

Proof of Correctness

$v_{i}[t]$: state of fault-free node i at the end of iteration t
$\mathbf{v}[t]$: vector of states of fault-free nodes
Proof ideas

- Construct a proper matrix $\mathbf{M}[t]$ such that

$$
\mathbf{v}[t]=\mathbf{M}[t] \mathbf{v}[t-1]
$$

Proof of Correctness

$v_{i}[t]$: state of fault-free node i at the end of iteration t
$\mathbf{v}[t]$: vector of states of fault-free nodes
Proof ideas

- Construct a proper matrix $\mathbf{M}[t]$ such that

$$
\mathbf{v}[t]=\mathbf{M}[t] \mathbf{v}[t-1]
$$

- Then

$$
\mathbf{v}[t]=(\mathbf{M}[t] \mathbf{M}[t-1] \cdots \mathbf{M}[0]) \mathbf{v}[0]
$$

Proof of Correctness

$v_{i}[t]$ ：state of fault－free node i at the end of iteration t
$\mathbf{v}[t]$ ：vector of states of fault－free nodes

Proof ideas

－Construct a proper matrix $\mathbf{M}[t]$ such that

$$
\mathbf{v}[t]=\mathbf{M}[t] \mathbf{v}[t-1]
$$

－Then

$$
\mathbf{v}[t]=(\mathbf{M}[t] \mathbf{M}[t-1] \cdots \mathbf{M}[0]) \mathbf{v}[0]
$$

－When $G(\mathcal{V}, \mathcal{E})$ satisfies Condition NC，

$$
\lim _{t} \mathbf{M}[t] \mathbf{M}[t-1] \cdots \mathbf{M}[0]=\mathbf{M}^{*}=\mathbf{1} \cdot \pi^{T}
$$

Matrix Construction

Recall that

$$
\begin{equation*}
v_{i}[t]=\frac{1}{\left|\mathcal{M}_{i}[t]-\mathcal{M}_{i s}[t]-\mathcal{M}_{i[}[t]\right|} \sum_{m \in \mathcal{M}_{i}[t]-\mathcal{M}_{i s}[t]-\mathcal{M}_{i}[t]} w_{m} \tag{1}
\end{equation*}
$$

To go from (1) to

$$
\mathbf{v}[t]=\mathbf{M}[t] \mathbf{v}[t-1]
$$

- Messages are collected over the G^{ℓ}
- Update graph is a subgraph of $\left(G_{F}\right)^{\ell}$
- Weights reallocation

Matrix Construction

Recall that

$$
\begin{equation*}
v_{i}[t]=\frac{1}{\left|\mathcal{M}_{i}[t]-\mathcal{M}_{i s}[t]-\mathcal{M}_{i[}[t]\right|} \sum_{m \in \mathcal{M}_{i}[t]-\mathcal{M}_{i s}[t]-\mathcal{M}_{i}[t]} w_{m} \tag{1}
\end{equation*}
$$

To go from（1）to

$$
\mathbf{v}[t]=\mathbf{M}[t] \mathbf{v}[t-1]
$$

－Messages are collected over the G^{ℓ}
－Update graph is a subgraph of $\left(G_{F}\right)^{\ell}$
－Weights reallocation
Condition NC guarantees that there exists a unique source component in the update graph．

Connection with existing work under unbounded path length

When G is undirected［Fischer－Lynch－Merritt，PODC85］
Theorem（Undirected Graph）
When $\ell \geq \ell^{*}$ ，if G is undirected，then $n \geq 3 b+1$ and node－connectivity of G is at least $2 b+1$ if and only if G satisfies Condition NC．

Connection with existing work under unbounded path length

When G is directed［PODC15：Tseng－Vaidya］
$B \rightarrow A$ ：Set A is influenced by set B if
－$A \cap B=\emptyset$
－nodes in A collectively have at least $b+1$ distinct incoming neighbors in B

Fault-Tolerant Distributed Optimization in Multi-Agent Networks

System Goal: Secure Multi-Agent Optimization

Cooperatively optimizing a global objective through inter-agent communication and local computations in the presence of faulty agents

Examples

－Robotic rendezvous problems．
－Parameter estimation in distributed sensor networks：
－Regression－based estimates using local sensor measurements
－Large－scale distributed machine learning，where data are generated at different locations

Outline

- Review: Faulty free
- Crash failure and Byzantine-resilience
- Impossibility results for Byzantine-resilience
- Algorithms for Byzantine-resilience
- Optimization problem with additional structures

Outline

－Review：Faulty free
－Crash failure and Byzantine－resilience
－Impossibility results for Byzantine－resilience
－Algorithms for Byzantine－resilience
－Optimization problem with additional structures

Model

- We consider a network of n agents with node set

$$
\mathcal{V}=[1,2, \ldots, n] .
$$

- Each agent i locally has its own convex objective function $h_{i}(x): \mathbb{R} \rightarrow \mathbb{R}$.

Goal (Failure-Free)

Agents want to cooperatively minimize

$$
h(x)=\frac{1}{n} \sum_{i=1}^{n} h_{i}(x)
$$

[Nedic and Ozdaglar, 2009], [Duchi et al., 2012], [Tsianos et al., 2012]

Examples

－Robotic rendezvous：
－$h_{i}(x)$ ：agent i＇s cost for rendezvous．
－$h(x)$ ：cost for rendezvous．
－Parameter estimation in distributed sensor networks：
－Regression－based estimates using local sensor measurements
－Large－scale distributed machine learning，where data are generated at different locations

Example: Empirical Risk Minimization

Suppose data is collected by different agents

- agent j keeps local data $\left\{x_{j i}, y_{j_{i}}\right\}_{i=1}^{m_{j}}, j=1, \cdots, n$
- Loss function: L, with $L\left(x_{j i}, y_{j i}, \theta\right)$
- Without communication: Locally minimizing $f_{j}(\theta):=\sum_{i=1}^{m_{j}} L\left(x_{j i}, y_{j i}, \theta\right)$
- With communication: Globally solving ([Nedic and Ozdaglar, 2009], [Duchi et al. 2012], and etc.)

$$
\min _{\theta} \frac{1}{n} \sum_{j=1}^{n} f_{j}(\theta)=\frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{m_{j}} L\left(x_{i}, y_{i}, \theta\right)
$$

Algorithm (fault-free) [Nedic and Ozdaglar, 2009]

- Compute $h_{i}^{\prime}\left(x_{i}[t]\right)$;
- Send $x_{i}[t]$ to nodes in N_{i}^{+}- the outgoing neighbors of i;
- Receive $x_{j}[t]$ from all its incoming neighbors N_{i}^{-};

$$
x_{i}[t+1] \leftarrow \frac{1}{\left|N_{i}^{-}\right|+1}\left(\sum_{j \in N_{i}^{-} \cup\{i\}} x_{i}[t]\right)-\lambda[t] h_{i}^{\prime}\left(x_{i}[t]\right)
$$

Algorithm (fault-free) [Nedic and Ozdaglar, 2009]

- Compute $h_{i}^{\prime}\left(x_{i}[t]\right)$;
- Send $x_{i}[t]$ to nodes in N_{i}^{+}- the outgoing neighbors of i;
- Receive $x_{j}[t]$ from all its incoming neighbors N_{i}^{-};

$$
\begin{aligned}
x_{i}[t+1] & \leftarrow \frac{1}{\left|N_{i}^{-}\right|+1}\left(\sum_{j \in N_{i}^{-} \cup\{i\}} x_{i}[t]\right)-\lambda[t] h_{i}^{\prime}\left(x_{i}[t]\right) \\
& =x_{i}[t]-\lambda[t] h_{i}^{\prime}\left(x_{i}[t]\right)+\frac{1}{\left|N_{i}^{-}\right|+1} \sum_{j \in N_{i}^{-}}\left(x_{j}[t]-x_{i}[t]\right)
\end{aligned}
$$

It can be shown that for sufficient large t, we have for each $i \in \mathcal{V}$

$$
x_{i}[t+1] \approx x_{i}[t]-\lambda[t] \frac{1}{n} \sum_{i=1}^{n} h_{i}^{\prime}\left(x_{i}[t]\right),
$$

Outline

－Review：Faulty free
－Crash failure and Byzantine－resilience
－Impossibility results for Byzantine－resilience
－Algorithms for Byzantine－resilience
－Optimization problem with additional structures

Fault－Tolerant Multi－Agent Optimization

－Fault models：Crash and Byzantine faults
－System models：Synchronous and asynchronous systems

Fault－Tolerant Multi－Agent Optimization

－Fault models：Crash and Byzantine faults
－System models：Synchronous and asynchronous systems When $f>0$ ，it is impossible to solve $h(x)=\frac{1}{n} \sum_{i=1}^{n} h_{i}(x)$ ．

Fault－Tolerant Multi－Agent Optimization

－Fault models：Crash and Byzantine faults
－System models：Synchronous and asynchronous systems When $f>0$ ，it is impossible to solve $h(x)=\frac{1}{n} \sum_{i=1}^{n} h_{i}(x)$ ．

Question

What should be the global objectives？

Fault－Tolerant Multi－Agent Optimization

－Fault models：Crash and Byzantine faults
－System models：Synchronous and asynchronous systems When $f>0$ ，it is impossible to solve $h(x)=\frac{1}{n} \sum_{i=1}^{n} h_{i}(x)$ ．

Question

What should be the global objectives？
Observations：

Fault－Tolerant Multi－Agent Optimization

－Fault models：Crash and Byzantine faults
－System models：Synchronous and asynchronous systems
When $f>0$ ，it is impossible to solve $h(x)=\frac{1}{n} \sum_{i=1}^{n} h_{i}(x)$ ．

Question

What should be the global objectives？
Observations：
（1）Only available and untampered h_{i} should be used．

Fault-Tolerant Multi-Agent Optimization

- Fault models: Crash and Byzantine faults
- System models: Synchronous and asynchronous systems

When $f>0$, it is impossible to solve $h(x)=\frac{1}{n} \sum_{i=1}^{n} h_{i}(x)$.

Question

What should be the global objectives?

Observations:

(1) Only available and untampered h_{i} should be used.
(2) Sufficient number of h_{i} 's should be used.

Assumptions on Local cost functions

－$h_{i}: \mathbb{R} \rightarrow \mathbb{R}$
－convex，and continuously differentiable
－optimal set is non－empty and compact（i．e．，bounded and closed）
－bounded gradient
－L－Lipschitz gradients

Global Objective: Crash Resilience - I

Up to f agents may crash - their local functions unavailable

Goal ($f>0$, crash fault)

Non-faulty agents want to collaboratively minimize an unknown function of the form

$$
h(x)=\sum_{i \in \mathcal{V}} \alpha_{i} h_{i}(x)
$$

where $\alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i}=1$, and depend on the failure pattern of the faulty agents.

When $\mathcal{F}=\{1, \ldots, f\}$ and crash at time $t=0$, it holds that $\alpha_{i}=0$ for $i=1, \ldots, f$.
Intuitively speaking, the coefficients α_{i} 's capture the utilization level of individual measurements.

Quality of the Output

- Only convex combination: multiple output candidates
- How to measure the quality of an output candidate?

Quality of the Output

- Only convex combination: multiple output candidates
- How to measure the quality of an output candidate?
(β, γ)-admissibility of a given $\alpha(\beta>0$, and $\gamma \in)$:
At least γ elements of α are lower bounded by β
not $\left(\frac{2}{10}, 4\right)$-admissible

Quality of the Output

- Only convex combination: multiple output candidates
- How to measure the quality of an output candidate?
(β, γ)-admissibility of a given $\alpha(\beta>0$, and $\gamma \in)$:
At least γ elements of α are lower bounded by β

Example: $\quad \alpha=\left\{\frac{1}{10}, \frac{3}{10}, 0,0, \frac{4}{10}, \frac{2}{10}, 0\right\}$ is $\left(\frac{1}{10}, 4\right)$-admissible not $\left(\frac{2}{10}, 4\right)$-admissible

Global Objective: Crash Resilience - II

Introducing two parameters $\beta \geq 0$ and $\gamma \geq 0$.
Non-faulty agents aim to minimize an unknown function

$$
h(x)=\sum_{i \in \mathcal{V}} \alpha_{i} h_{i}(x)
$$

such that

$$
\begin{array}{r}
\forall i \in \mathcal{V}, \alpha_{i} \geq 0, \quad \sum_{i \in \mathcal{V}} \alpha_{i}=1 \\
\quad \text { and } \quad \sum_{i \in \mathcal{V}} \mathbf{1}\left(\alpha_{i} \geq \beta\right) \geq \gamma
\end{array}
$$

[Su and Vaidya,arxiv'15c]

(1) Synchronous system: $\alpha_{i}=\alpha_{j} \geq \frac{1}{n}$ for all $i, j \in \mathcal{N}$.
(2) Asynchronous system: $\alpha_{i} \geq \frac{1}{n}$ for all $i \in \mathcal{N}$.

Global Objective: Byzantine Resilience

Up to f agents may be Byzantine - they can hide and adaptively lie about their local functions

Refined Goal ($f>0$, Byzantine fault) for $\beta \geq 0$ and $\gamma \geq 0$

Non-faulty agents want to collaboratively minimize an unknown function of the form

$$
h(x)=\sum_{i \in \mathcal{N}} \alpha_{i} h_{i}(x)
$$

such that

$$
\begin{aligned}
& \quad \forall i \in \mathcal{N}, \alpha_{i} \geq 0, \sum_{i \in \mathcal{N}} \alpha_{i}=1 \\
& \text { and } \quad \sum_{i \in \mathcal{N}} \mathbf{1}\left(\alpha_{i} \geq \beta\right) \geq \gamma
\end{aligned}
$$

Henceforth, we consider synchronous system.

Outline

- Review: Faulty free
- Crash failure and Byzantine-resilience
- Impossibility results for Byzantine failure
- Algorithms for Byzantine-resilience
- Optimization problem with additional structures

Impossibility Results

Theorem 1 ［S．and Vaidya，TAC＇20］

When $f>0$ ，it is impossible to minimize

$$
h(x)=\sum_{i \in \mathcal{N}} \frac{1}{|\mathcal{N}|} h_{i}(x)
$$

Impossibility Results

Theorem 1 [S. and Vaidya, TAC'20]

When $f>0$, it is impossible to minimize

$$
h(x)=\sum_{i \in \mathcal{N}} \frac{1}{|\mathcal{N}|} h_{i}(x)
$$

Intuition: Need to identify which agents are Byzantine. Impossible under data heterogeneity!!!

Impossibility Results

Theorem 1 [S. and Vaidya,TAC'20]

When $f>0$, it is impossible to minimize

$$
h(x)=\sum_{i \in \mathcal{N}} \frac{1}{|\mathcal{N}|} h_{i}(x)
$$

Intuition: Need to identify which agents are Byzantine. Impossible under data heterogeneity!!!

Theorem 2 [S. and Vaidya, TAC'20]

It is impossible to achieve $\beta \geq \epsilon$ and $\gamma>|\mathcal{N}|-f$ regardless of the choice of $\epsilon>0$.

Impossibility Results

Theorem 1 [S. and Vaidya, TAC'20]

When $f>0$, it is impossible to minimize

$$
h(x)=\sum_{i \in \mathcal{N}} \frac{1}{|\mathcal{N}|} h_{i}(x)
$$

Intuition: Need to identify which agents are Byzantine. Impossible under data heterogeneity!!!

Theorem 2 [S. and Vaidya, TAC'20]

It is impossible to achieve $\beta \geq \epsilon$ and $\gamma>|\mathcal{N}|-f$ regardless of the choice of $\epsilon>0$.

Remark: Byzantine resilience comes at a price of sacrificing the information collected by at least f non-faulty agents

Outline

－Review：Faulty free
－Crash failure and Byzantine－resilience
－Impossibility results for Byzantine failure
－Algorithms for Byzantine－resilience
－Optimization problem with additional structures

Algorithm 1: Broadcasting local functions

Step 1: Perform Byzantine broadcast for each of $h_{j}(x)$.

The n local functions collected by agent j

Step 2: If there exists $x_{0} \in \mathbb{R}$ such that

$$
\sum_{i \in A(x)-F_{1}^{*}(x)} h_{i}^{\prime}(x)+\sum_{i \in B(x)-F_{2}^{*}(x)} h_{i}^{\prime}(x)=0
$$

then output $\widetilde{x}=x_{0}$; otherwise, output $\widetilde{x}=\perp$.
On $F_{1}^{*}(x)$ and $F_{2}^{*}(x)$: F_{1}^{*} largest f (if any) positive gradient, F_{2}^{*} smallest f (if any) negative gradient

Algorithm 1: Broadcasting local functions

Step 1: Perform Byzantine broadcast for each of $h_{j}(x)$.

The n local functions collected by agent j

Step 2: If there exists $x_{0} \in \mathbb{R}$ such that

$$
\sum_{i \in A(x)-F_{1}^{*}(x)} h_{i}^{\prime}(x)+\sum_{i \in B(x)-F_{2}^{*}(x)} h_{i}^{\prime}(x)=0
$$

then output $\widetilde{x}=x_{0}$; otherwise, output $\widetilde{x}=\perp$.
Theorem 3[S. and Vaidya, TAC'20, arXiv 2015'a]
When $n>3 f$, Algorithm 1 achieves the refined goal with
$\beta=\max \left\{\frac{1}{n}, \frac{1}{2(|\mathcal{N}|-f)}\right\}$ and $\gamma=|\mathcal{N}|-f$.

Algorithm 1：Alternative Interpretation

For each $x \in \mathbb{R}$ ，let

$$
H(x)=\sum_{i \in A(x)-F_{1}^{*}(x)} h_{i}^{\prime}(x)+\sum_{i \in B(x)-F_{2}^{*}(x)} h_{i}^{\prime}(x)
$$

Theorem

For given \mathcal{N} and \mathcal{F} ，there exists a convex and differentiable function $\mathbf{H}(\cdot)$ such that $\mathbf{H}^{\prime}(x)=H(x)$ ．

Essentially，the above algorithm outputs an optimum of the following constrained convex optimization problem，where $\operatorname{Cov}\left(\cup_{i \in \mathcal{N}} X_{i}\right) \subseteq[c, d]:$

$$
\begin{array}{cl}
\min & \mathbf{H}(x) \\
\text { s.t. } & x \in[c, d] .
\end{array}
$$

Algorithm 2：Gradient Broadcast＋Admissibility Check

Algorithm 2：Agent j for $j \in \mathcal{N}$

－Perform Byzantine consensus on initial estimates $x_{j}[0]$＇s．
－Compute $h_{j}^{\prime}\left(x_{j}[t]\right)$ ，and perform Byzantine broadcast of $h_{j}^{\prime}\left(x_{j}[t]\right)$ to all the agents．
－Admissibility check on received gradients $\left\{g_{1}[t], \ldots, g_{n}[t]\right\}$ ．
－Trim away extreme gradients．Let $\mathcal{R}_{j}^{*}[t]$ be the agents whose gradients have not been removed．
－$x_{j}[t+1] \leftarrow x_{j}[t]-\lambda[t] \sum_{i \in \mathcal{R}^{*}[t]} g_{i}[t]$.

Algorithm 2: Gradient Broadcast + Admissibility Check

Algorithm 2: Agent j for $j \in \mathcal{N}$

- Perform Byzantine consensus on initial estimates $x_{j}[0]$'s.
- Compute $h_{j}^{\prime}\left(x_{j}[t]\right)$, and perform Byzantine broadcast of $h_{j}^{\prime}\left(x_{j}[t]\right)$ to all the agents.
- Admissibility check on received gradients $\left\{g_{1}[t], \ldots, g_{n}[t]\right\}$.
- Trim away extreme gradients. Let $\mathcal{R}_{j}^{*}[t]$ be the agents whose gradients have not been removed.

$$
x_{j}[t+1] \leftarrow x_{j}[t]-\lambda[t] \sum_{i \in \mathcal{R}^{*}[t]} g_{i}[t] .
$$

Admissibility check: check whether the received gradients can be interpreted as the gradient of some convex functions.
Diminishing stepsizes: $\lambda[t] \rightarrow 0, \sum_{t=0}^{\infty} \lambda[t]=\infty$ and $\overline{\sum_{t=0}^{\infty} \lambda^{2}[t]<\infty .}$

Correctness of Algorithm 2: Proof Ideas

(1) Identical estimates at non-faulty agents: $x_{j}[t]=x_{i}[t]$, for $i, j \in \mathcal{N}$. Let $x[t]=x_{j}[t]$.
(2) Admissibility check force the faulty agents behave as if its local function is admissible. Thus agent i keeps local function $h_{i}(\cdot)$ for each $i \in \mathcal{V}$.
(3) Let $H(\cdot)$ be defined as before, i.e.,

$$
H(x)=\sum_{i \in A(x)-F_{1}^{*}(x)} h_{i}^{\prime}(x)+\sum_{i \in B(x)-F_{2}^{*}(x)} h_{i}^{\prime}(x) .
$$

(1) Indeed,

$$
\begin{aligned}
x[t+1] & =x[t]-\lambda[t] \sum_{i \in \mathcal{R}^{*}[t]} g_{i}[t] \\
& =x[t]-\lambda[t] H(x[t]) .
\end{aligned}
$$

Algorithm 2: Alternative Interpretation

Since

$$
\begin{aligned}
x[t+1] & =x[t]-\lambda[t] \sum_{i \in \mathcal{R}^{*}[t]} g_{i}[t] \\
& =x[t]-\lambda[t] H(x[t])
\end{aligned}
$$

The agents in the network are collaboratively solving

$$
\begin{array}{cl}
\min & \mathbf{H}(x) \\
\text { s.t. } & x \in[c, d],
\end{array}
$$

using gradient descent method.
－Byzantine broadcast communication is costly．
－Fully distributed algorithm exists，in which only local communication and local computation is needed．
－In particular，at each iteration t ，agent j computes its local gradient at $x_{j}[t]$ and sends both $x_{j}[t]$ and its gradient to the other agents．
－Trim over received estimates $x_{i}[t]$＇s and over received gradients，respectively．

Algorithm 3：An Optimal Fully Distributed Algorithm

Theorem（S．and Vaidya，PODC＇16）

There exists a distributed algorithm whose output admits an α that is (β, γ)－admissible with $\gamma=|\mathcal{N}|-f$ and $\beta=\frac{1}{2(|\mathcal{N}|-f)}$ ．

Algorithm 3: An Optimal Fully Distributed Algorithm

Theorem (S. and Vaidya,PODC'16)

There exists a distributed algorithm whose output admits an α that is (β, γ)-admissible with $\gamma=|\mathcal{N}|-f$ and $\beta=\frac{1}{2(|\mathcal{N}|-f)}$.

- $\gamma=|\mathcal{N}|-f$ is optimal [S. and Vaidya,16 ACC]
- $\beta=\frac{1}{2(|\mathcal{N}|-f)}$ is "off" by a factor of 2
- observing that the largest possible β is $\frac{1}{|\mathcal{N}|-f}$
- Communication network: complete graph
- Can be extended to incomplete graphs [S.and Vaidya, arXiv'15d]

Assumptions

－Local cost functions
－$h_{i}: \mathbb{R} \rightarrow \mathbb{R}$
－convex，and continuously differentiable
－optimal set is non－empty and compact（i．e．，bounded and closed）
－bounded gradient
－L－Lipschitz gradients

SBG: Synchronous Byzantine Gradient Method

gradient descent method + iterative Byzantine approximate consensus

Each agent i maintains local estimate $x_{i}[t]$
SBG (In each iteration)

- Send estimate $x_{i}[t]$ and gradient $h_{i}^{\prime}\left(x_{i}[t]\right)$ to all agents;
- $x_{i}[t+1]=\operatorname{Trim}\{x[t]\}-\lambda[t] \times \operatorname{Trim}\left\{h^{\prime}[t]\right\}$

SBG: Synchronous Byzantine Gradient Method

gradient descent method + iterative Byzantine approximate consensus

Each agent i maintains local estimate $x_{i}[t]$
SBG (In each iteration)

- Send estimate $x_{i}[t]$ and gradient $h_{i}^{\prime}\left(x_{i}[t]\right)$ to all agents;
- $x_{i}[t+1]=\operatorname{Trim}\{x[t]\}-\lambda[t] \times \operatorname{Trim}\left\{h^{\prime}[t]\right\}$

Trim: drop smallest f, largest f values, and take the mean of the remained values

SBG: Synchronous Byzantine Gradient Method

gradient descent method + iterative Byzantine approximate consensus

Each agent i maintains local estimate $x_{i}[t]$
SBG (In each iteration)

- Send estimate $x_{i}[t]$ and gradient $h_{i}^{\prime}\left(x_{i}[t]\right)$ to all agents;
- $x_{i}[t+1]=\operatorname{Trim}\{x[t]\}-\lambda[t] \times \operatorname{Trim}\left\{h^{\prime}[t]\right\}$

Trim: drop smallest f, largest f values, and take the mean of the remained values

Trim gradients: impose structure

Proof Outline

Consensus:

$$
\lim _{t}\left(x_{i}[t]-x_{j}[t]\right)=0, \text { for all } i, j \in \mathcal{N}
$$

ii Optimality:
$x_{i}[t]$ is asymptotically $\left(\frac{1}{2(|\mathcal{N}|-f)},|\mathcal{N}|-f\right)$-admissible
Asymptotically $x_{i}[t]$ minimizes $\sum_{j \in \mathcal{N}} \alpha_{j} h_{j}(x)$ such that
α is (β, γ)-admissible with $\gamma=|\mathcal{N}|-f$ and $\beta=$ $\frac{1}{2(|\mathcal{N}|-f)}$.

Characterization of Desired Outputs

Valid function p :

- $p(x)=\sum_{i \in \mathcal{N}} \alpha_{i} h_{i}(x)$
- weight vector α is $\left(\frac{1}{2(|\mathcal{N}|-f)},|\mathcal{N}|-f\right)$-admissible

Characterization of Desired Outputs

Valid function p :

- $p(x)=\sum_{i \in \mathcal{N}} \alpha_{i} h_{i}(x)$
- weight vector α is $\left(\frac{1}{2(|\mathcal{N}|-f)},|\mathcal{N}|-f\right)$-admissible

Set Y : all minimizers of valid functions

Characterization of Desired Outputs

Valid function p ：
－$p(x)=\sum_{i \in \mathcal{N}} \alpha_{i} h_{i}(x)$
－weight vector α is $\left(\frac{1}{2(|\mathcal{N}|-f)},|\mathcal{N}|-f\right)$－admissible
Set Y ：all minimizers of valid functions
Lemma
Set Y is convex and closed．

Characterization of Desired Outputs

Valid function p :

- $p(x)=\sum_{i \in \mathcal{N}} \alpha_{i} h_{i}(x)$
- weight vector α is $\left(\frac{1}{2(|\mathcal{N}|-f)},|\mathcal{N}|-f\right)$-admissible

Set Y : all minimizers of valid functions
Lemma
Set Y is convex and closed.

Optimality:
$x_{i}[t]$ is asymptotically $\left(\frac{1}{2(|\mathcal{N}|-f)},|\mathcal{N}|-f\right)$-admissible
$\Longleftrightarrow \lim _{t} \operatorname{Distance}\left(x_{i}[t], Y\right)=0$

A Variant of Gradient Decent Update Rule

Update rule: $\quad x_{i}[t+1]=\operatorname{Trim}\{x[t]\}-\lambda[t] \cdot \operatorname{Trim}\left\{h^{\prime}[t]\right\}$

A Variant of Gradient Decent Update Rule

Update rule: $\quad x_{i}[t+1]=\operatorname{Trim}\{x[t]\}-\lambda[t] \cdot \operatorname{Trim}\left\{h^{\prime}[t]\right\}$

Lemma

$\operatorname{Trim}\left\{h^{\prime}[t]\right\}$ at agent $i=\sum_{j \in \mathcal{N}} \alpha_{j}^{i}[t] h_{j}^{\prime}\left(x_{j}[t]\right)$,
where $\alpha^{i}[t]$ is $\left(\frac{1}{2(|\mathcal{N}|-f)},|\mathcal{N}|-f\right)$-admissible

A Variant of Gradient Decent Update Rule

Update rule: $\quad x_{i}[t+1]=\operatorname{Trim}\{x[t]\}-\lambda[t] \cdot \operatorname{Trim}\left\{h^{\prime}[t]\right\}$

Lemma

$\operatorname{Trim}\left\{h^{\prime}[t]\right\}$ at agent $i=\sum_{j \in \mathcal{N}} \alpha_{j}^{i}[t] h_{j}^{\prime}\left(x_{j}[t]\right)$,
where $\alpha^{i}[t]$ is $\left(\frac{1}{2(|\mathcal{N}|-f)},|\mathcal{N}|-f\right)$-admissible

$$
x_{i}[t+1]=\operatorname{Trim}\{x[t]\}-\lambda[t] \cdot \sum_{j \in \mathcal{N}} \alpha_{j}^{i}[t] h_{j}^{\prime}\left(x_{j}[t]\right)
$$

A Variant of Gradient Decent Update Rule

Update rule: $\quad x_{i}[t+1]=\operatorname{Trim}\{x[t]\}-\lambda[t] \cdot \operatorname{Trim}\left\{h^{\prime}[t]\right\}$

Lemma

$\operatorname{Trim}\left\{h^{\prime}[t]\right\}$ at agent $i=\sum_{j \in \mathcal{N}} \alpha_{j}^{i}[t] h_{j}^{\prime}\left(x_{j}[t]\right)$,
where $\alpha^{i}[t]$ is $\left(\frac{1}{2(|\mathcal{N}|-f)},|\mathcal{N}|-f\right)$-admissible

$$
\begin{aligned}
x_{i}[t+1] & =\operatorname{Trim}\{x[t]\}-\lambda[t] \cdot \sum_{j \in \mathcal{N}} \alpha_{j}^{i}[t] h_{j}^{\prime}\left(x_{j}[t]\right) \\
& \approx x_{i}[t]-\lambda[t] \cdot \sum_{j \in \mathcal{N}} \alpha_{j}^{i}[t] h_{j}^{\prime}\left(x_{i}[t]\right)
\end{aligned}
$$

A Variant of Gradient Decent Update Rule

Update rule: $\quad x_{i}[t+1]=\operatorname{Trim}\{x[t]\}-\lambda[t] \cdot \operatorname{Trim}\left\{h^{\prime}[t]\right\}$

Lemma

$\operatorname{Trim}\left\{h^{\prime}[t]\right\}$ at agent $i=\sum_{j \in \mathcal{N}} \alpha_{j}^{i}[t] h_{j}^{\prime}\left(x_{j}[t]\right)$,
where $\alpha^{i}[t]$ is $\left(\frac{1}{2(|\mathcal{N}|-f)},|\mathcal{N}|-f\right)$-admissible

$$
\begin{aligned}
x_{i}[t+1] & =\operatorname{Trim}\{x[t]\}-\lambda[t] \cdot \sum_{j \in \mathcal{N}} \alpha_{j}^{i}[t] h_{j}^{\prime}\left(x_{j}[t]\right) \\
& \approx x_{i}[t]-\lambda[t] \cdot \sum_{j \in \mathcal{N}} \alpha_{j}^{i}[t] h_{j}^{\prime}\left(x_{i}[t]\right)
\end{aligned}
$$

$\sum_{j \in \mathcal{N}} \alpha_{j}^{i}[t] h_{j}^{\prime}\left(x_{i}[t]\right)$: the gradient of a valid function $p_{t, i}$

A Variant of Gradient Decent Update Rule

Update rule: $\quad x_{i}[t+1]=\operatorname{Trim}\{x[t]\}-\lambda[t] \cdot \operatorname{Trim}\left\{h^{\prime}[t]\right\}$

Lemma

$\operatorname{Trim}\left\{h^{\prime}[t]\right\}$ at agent $i=\sum_{j \in \mathcal{N}} \alpha_{j}^{i}[t] h_{j}^{\prime}\left(x_{j}[t]\right)$, where $\alpha^{i}[t]$ is $\left(\frac{1}{2(|\mathcal{N}|-f)},|\mathcal{N}|-f\right)$-admissible

$$
\begin{aligned}
x_{i}[t+1] & =\operatorname{Trim}\{x[t]\}-\lambda[t] \cdot \sum_{j \in \mathcal{N}} \alpha_{j}^{i}[t] h_{j}^{\prime}\left(x_{j}[t]\right) \\
& \approx x_{i}[t]-\lambda[t] \cdot \sum_{j \in \mathcal{N}} \alpha_{j}^{i}[t] h_{j}^{\prime}\left(x_{i}[t]\right) \\
& =x_{i}[t]-\lambda[t] \cdot p_{t, i}^{\prime}\left(x_{i}[t]\right)
\end{aligned}
$$

$\sum_{j \in \mathcal{N}} \alpha_{j}^{i}[t] h_{j}^{\prime}\left(x_{i}[t]\right)$: the gradient of a valid function $p_{t, i}$

Remaining Optimality Proof

"gradient descent analysis" on the auxiliary $\{z[t]\}_{t=0}^{\infty}$ such that

$$
\begin{gathered}
\quad z[t]=x_{j t}[t] \\
\text { where } j_{t} \in_{j \in \mathcal{N}} \text { Distance }\left(x_{j}[t], Y\right) .
\end{gathered}
$$

Remaining Optimality Proof

＂gradient descent analysis＂on the auxiliary $\{z[t]\}_{t=0}^{\infty}$ such that

$$
\begin{aligned}
& \quad z[t]=x_{j_{t}}[t] \\
& \text { where } j_{t} \in \in_{j \in \mathcal{N}} \text { Distance }\left(x_{j}[t], Y\right) .
\end{aligned}
$$

Intuitions behind optimality：

－The gradient of any valid function pushes $x_{i}[t]$ towards Y
－Since Y is convex，$x_{i}[t]$ is asymptotically trapped in Y

Open Problems

- General local function: vector inputs β, γ scale poorly in the input dimension d
- Incomplete graphs [S. and Vaidya, TAC'20]: weights might not be optimal

Open Problems

－General local function：vector inputs β, γ scale poorly in the input dimension d
－Incomplete graphs［S．and Vaidya，TAC＇20］：weights might not be optimal

What if we have additional structures？

Learning in Multi－Agent Networks

Learning in Multi－Agent Networks

－Each agent makes local observations
－Communicate with others

Learning in Multi-Agent Networks

- Each agent makes local observations
- Communicate with others

Who should be the President?
What is the object in the sky? Meteor

Biden, Trump
Bird, Plane, Missile,

Outline

－Review：Faulty free
－Crash failure and Byzantine－resilience
－Impossibility results for Byzantine－resilience
－Algorithms for Byzantine－resilience
－Optimization problem with additional structures

Learning over Multi-Agent Network (contd)

- Local observations: partially informative

Collaboration is necessary!

Learning over Multi-Agent Network (contd)

- Local observations: partially informative

Collaboration is necessary!

- Some agents are adversarial: prevent the truth being learned

Learning over Multi-Agent Network (contd)

- Local observations: partially informative

Collaboration is necessary!

- Some agents are adversarial: prevent the truth being learned

Goal: Non-faulty agents collaboratively learn the truth

Problem Formulation

- n agents in a directed network
- θ^{*} : unknown true state
- m possible states: $\theta_{1}, \ldots, \theta_{m}$

Problem Formulation

－n agents in a directed network
－θ^{*} ：unknown true state
－m possible states：$\theta_{1}, \ldots, \theta_{m}$

－$s_{t}^{i} \sim \ell_{\theta^{*}}^{i}$ ：private signals of agent i at time t

Problem Formulation (contd)

- Local indistinguishability

- Byzantine fault model: Up to f agents suffering Byzantine faults

Problem Formulation (contd)

- Local indistinguishability

- Byzantine fault model: Up to f agents suffering Byzantine faults

Goal: Non-faulty agents collaboratively learn θ^{*}

Local Information

KL divergence $D_{K L}\left(\ell_{\theta_{j}}^{i} \| \ell_{\theta_{k}}^{i}\right)=0$ iff the two distributions identical
$\Rightarrow \quad \theta_{j}$ and θ_{k} indistinguishable to agent i

Local Information

KL divergence $D_{K L}\left(\ell_{\theta_{j}}^{i} \| \ell_{\theta_{k}}^{i}\right)=0$ iff the two distributions identical
$\Rightarrow \quad \theta_{j}$ and θ_{k} indistinguishable to agent i

- $D_{K L}\left(l_{\text {elephant }}^{i} \| I_{\text {tree }}^{i}\right)=0$
\Rightarrow elephant and tree look alike to agent i

Local Information

KL divergence $D_{K L}\left(\ell_{\theta_{j}}^{i} \| \ell_{\theta_{k}}^{i}\right)=0$ iff the two distributions identical
$\Rightarrow \quad \theta_{j}$ and θ_{k} indistinguishable to agent i

- $D_{K L}\left(I_{\text {elephant }}^{i} \| I_{\text {tree }}^{i}\right)=0$
\Rightarrow elephant and tree look alike to agent i
- $D_{K L}\left(l_{\text {elephant }}^{i} \| I_{\text {tree }}^{i}\right)>0$
\Rightarrow elephant not confused with a tree by agent i

Global Information

$\sum_{i} D_{K L}\left(\ell_{\theta^{*}}^{i} \| \ell_{\theta}^{i}\right) \neq 0 \quad$ for all $\theta \neq \theta^{*}$

\Rightarrow Collectively agents can distinguish θ^{*}（elephant）from
$\theta \neq \theta^{*}$

Global Information

$$
\begin{aligned}
& \sum_{i} D_{K L}\left(\ell_{\theta^{*}}^{i} \| \ell_{\theta}^{i}\right) \neq 0 \text { for all } \theta \neq \theta^{*} \\
& \Rightarrow \text { Collectively agents can distinguish } \theta^{*} \text { (elephant) from } \\
& \theta \neq \theta^{*}
\end{aligned}
$$

- When all agents cooperate, this suffices to learn θ^{*}

Global Information

$$
\begin{aligned}
& \sum_{i} D_{K L}\left(\ell_{\theta^{*}}^{i} \| \ell_{\theta}^{i}\right) \neq 0 \quad \text { for all } \theta \neq \theta^{*} \\
& \Rightarrow \text { Collectively agents can distinguish } \theta^{*} \text { (elephant) from } \\
& \theta \neq \theta^{*}
\end{aligned}
$$

－When all agents cooperate，this suffices to learn θ^{*}
－Not sufficient with Byzantine agents

Our Contributions [S. and Vaidya, DC'18]

(1) Sufficient condition on I_{θ}^{i} 's for learning with Byzantine faults

Our Contributions [S. and Vaidya, DC'18]

(1) Sufficient condition on I_{θ}^{i} 's for learning with Byzantine faults
(2) First distributed learning algorithm robust to Byzantine faults

Our Contributions［S．and Vaidya，DC＇18］

（1）Sufficient condition on l_{θ}^{i}＇s for learning with Byzantine faults
（2）First distributed learning algorithm robust to Byzantine faults
（3）Proved fast convergence of the proposed algorithm

Our Contributions［S．and Vaidya，DC＇18］

（1）Sufficient condition on l_{θ}^{i}＇s for learning with Byzantine faults
（2）First distributed learning algorithm robust to Byzantine faults
（3）Proved fast convergence of the proposed algorithm
（9）Recent results：A light－weight algorithm

Local Information v.s. Global Information

Local information:

- $D_{K L}\left(\ell_{\theta^{*}}^{i} \| \ell_{\theta}^{i}\right)$: amount of info. at agent i to distinguish θ^{*}, θ
- $D_{K L}\left(\ell_{\theta^{*}}^{i} \| \ell_{\theta}^{i}\right)=0$: non-informative
- $D_{K L}\left(\ell_{\theta^{*}}^{i} \| \ell_{\theta}^{i}\right) \neq 0$: informative

Global information:

- $\sum_{i} D_{K L}\left(\ell_{\theta^{*}}^{i} \| \ell_{\theta}^{i}\right)$: amount of info. globally available
- $\sum_{i} D_{K L}\left(\ell_{\theta^{*}}^{i} \| \ell_{\theta}^{i}\right)=0$: collectively non-informative
- $\sum_{i} D_{K L}\left(\ell_{\theta^{*}}^{i} \| \ell_{\theta}^{i}\right) \neq 0$: collectively informative

Question: Will collectively non-informative sufficient to learn
θ^{*} ?

Network Identifiability Condition

－every agent is cooperative：＂collectively informative＂is sufficient，i．e．，θ^{*} identifiable if

$$
\sum_{i} D\left(\ell_{\theta^{*}}^{i} \| \ell_{\theta}^{i}\right) \neq 0, \quad \forall \theta \neq \theta^{*}
$$

Network Identifiability Condition

- every agent is cooperative: "collectively informative" is sufficient, i.e., θ^{*} identifiable if

$$
\sum_{i} D\left(\ell_{\theta^{*}}^{i} \| \ell_{\theta}^{i}\right) \neq 0, \quad \forall \theta \neq \theta^{*}
$$

- Byzantine faults: "collectively informative" is NOT sufficient!
- Information propagation obstructed by Byzantine agents

Network Identifiability Condition

- every agent is cooperative: "collectively informative" is sufficient, i.e., θ^{*} identifiable if

$$
\sum_{i} D\left(\ell_{\theta^{*}}^{i} \| \ell_{\theta}^{i}\right) \neq 0, \quad \forall \theta \neq \theta^{*}
$$

- Byzantine faults: "collectively informative" is NOT sufficient!
- Information propagation obstructed by Byzantine agents

Stronger network identifiability is required !!!

Contributions

－First learning algorithm robust to Byzantine attacks：

Contributions

－First learning algorithm robust to Byzantine attacks：
－each non－faulty agent learns the true state almost surely
－beliefs on the wrong state decrease $O\left(\exp \left(-\tilde{C} t^{2}\right)\right)$

Contributions

- First learning algorithm robust to Byzantine attacks:
- each non-faulty agent learns the true state almost surely
- beliefs on the wrong state decrease $O\left(\exp \left(-\tilde{C} t^{2}\right)\right)$
- Identify sufficient condition on the global identifiability

Contributions

- First learning algorithm robust to Byzantine attacks:
- each non-faulty agent learns the true state almost surely
- beliefs on the wrong state decrease $O\left(\exp \left(-\tilde{C} t^{2}\right)\right)$
- Identify sufficient condition on the global identifiability
- When $f=0$ (failure-free): $O\left(\exp \left(-\tilde{C} t^{2}\right)\right)$

Contributions

- First learning algorithm robust to Byzantine attacks:
- each non-faulty agent learns the true state almost surely
- beliefs on the wrong state decrease $O\left(\exp \left(-\tilde{C} t^{2}\right)\right)$
- Identify sufficient condition on the global identifiability
- When $f=0$ (failure-free): $O\left(\exp \left(-\tilde{C} t^{2}\right)\right)$
- Low complexity variation
- Complexity: $O\left(m^{2} n \log n\right)$
- Minimal global identifiability

Related Work

Failure－free

－Bayesian learning：［Banerjee92，Gale03，Acemoglu11］
－high complexity
－Non－Bayesian learning［Bala98，Acemoglu10，Golub10， Jadbabaie12］
－Consensus－based models［Jadbabaie12］ ［Nedic，Olshevsky，Uribe，TAC＇17］

Belief Vectors

- $\mu_{t}^{i}=\left[\mu_{t}^{i}\left(\theta_{1}\right), \ldots, \mu_{t}^{i}\left(\theta_{m}\right)\right]$: approximate belief vector
- μ_{0}^{i} : initial belief

Belief Vectors

- $\mu_{t}^{i}=\left[\mu_{t}^{i}\left(\theta_{1}\right), \ldots, \mu_{t}^{i}\left(\theta_{m}\right)\right]$:
approximate belief vector
- μ_{0}^{i} : initial belief
- Goal: $\lim _{t} \mu_{t}^{i}\left(\theta^{*}\right) 1$

θ_{1}	elephant
θ_{2}	spear
θ_{3}	snake
θ_{4}	curtain
θ_{5}	wall
θ_{6}	tree
θ_{7}	rope

$\mu_{t}^{i}($ elephant $)$	0.3
μ_{t}^{i} (spear)	0.3
$\mu_{t}^{i}($ snake $)$	0.1
$\mu_{t}^{i}($ curtain $)$	0.1
$\mu_{t}^{i}($ wall $)$	0.1
μ_{t}^{i} (tree $)$	0.05
$\mu_{t}^{i}($ rope $)$	0.05

Our Algorithm

Network：Alice，Bob，Charlie and David

Our Algorithm

At the end of time t

Our Algorithm

During time $t+1$ ：new observation

Our Algorithm

During time $t+1$ ：beliefs from neighbors

Our Algorithm

$$
\theta^{4,4 t i t h e n}
$$

Update

$$
\mu_{t+1}^{A}(\theta)
$$

reconcile $\left\{\mu_{t}^{A}(\theta), \mu_{t}^{B}(\theta), \mu_{t}^{C}(\theta), \mu_{t}^{D}(\theta)\right\}$

Our Algorithm

$$
s_{t+1}^{A} \mu_{t}^{A} \mu_{t}^{B} \mu_{t}^{C} \mu_{t}^{D}
$$

Update

$$
\mu_{t+1}^{A}(\theta)
$$

reconcile $\left\{\mu_{t}^{A}(\theta), \mu_{t}^{B}(\theta), \mu_{t}^{C}(\theta), \mu_{t}^{D}(\theta)\right\} \times \ell_{A}^{\theta}\left(s_{1}^{A}, \cdots, s_{t+1}^{A}\right)$

Our Algorithm

$$
s_{t+1}^{A} \mu_{t}^{A} \mu_{t}^{B} \mu_{t}^{C} \mu_{t}^{D}
$$

Update

$$
\mu_{t+1}^{A}(\theta) \propto
$$

reconcile $\left\{\mu_{t}^{A}(\theta), \mu_{t}^{B}(\theta), \mu_{t}^{C}(\theta), \mu_{t}^{D}(\theta)\right\} \times \ell_{A}^{\theta}\left(s_{1}^{A}, \cdots, s_{t+1}^{A}\right)$

Our Algorithm

$$
\rho_{t+1}^{A} \mu_{t}^{A} \mu_{t}^{B} \mu_{t}^{C} \mu_{t}^{D}
$$

Update

$$
\mu_{t+1}^{A}(\theta) \propto
$$

reconcile $\left\{\mu_{t}^{A}(\theta), \mu_{t}^{B}(\theta), \mu_{t}^{C}(\theta), \mu_{t}^{D}(\theta)\right\} \times \ell_{A}^{\theta}\left(s_{1}^{A}, \cdots, s_{t+1}^{A}\right)$
$\ell_{A}^{\theta}\left(s_{1}^{A}, \cdots, s_{t+1}^{A}\right):$

- local history summary
- easy computation:

$$
\ell_{A}^{\theta}\left(s_{1}^{A}, \cdots, s_{t+1}^{A}\right)=\ell_{A}^{\theta}\left(s_{1}^{A}, \cdots, s_{t}^{A}\right) \ell_{A}^{\theta}\left(s_{t+1}^{A}\right)
$$

Information Reconciliation

Update

$$
\begin{gathered}
\mu_{t+1}^{A}(\theta) \propto \operatorname{reconcile}\left\{\mu_{t}^{A}(\theta), \mu_{t}^{B}(\theta), \mu_{t}^{C}(\theta), \mu_{t}^{D}(\theta)\right\} \times \\
\ell_{A}^{\theta}\left(s_{1}^{A}, \cdots, s_{t+1}^{A}\right)
\end{gathered}
$$

Information Reconciliation

Update

$$
\begin{gathered}
\mu_{t+1}^{A}(\theta) \propto \underset{\operatorname{reconcile}}{ }\left\{\mu_{t}^{A}(\theta), \mu_{t}^{B}(\theta), \mu_{t}^{C}(\theta), \mu_{t}^{D}(\theta)\right\} \times \\
\ell_{A}^{\theta}\left(s_{1}^{A}, \cdots, s_{t+1}^{A}\right)
\end{gathered}
$$

(1) malicious messages

Information Reconciliation

Update

$$
\begin{gathered}
\mu_{t+1}^{A}(\theta) \propto \operatorname{reconcile}\left\{\mu_{t}^{A}(\theta), \mu_{t}^{B}(\theta), \mu_{t}^{C}(\theta), \mu_{t}^{D}(\theta)\right\} \times \\
\ell_{A}^{\theta}\left(s_{1}^{A}, \cdots, s_{t+1}^{A}\right)
\end{gathered}
$$

(1) malicious messages
(2) beliefs can completely biased

Information Reconciliation

Update

$$
\begin{gathered}
\mu_{t+1}^{A}(\theta) \propto \operatorname{reconcile}\left\{\mu_{t}^{A}(\theta), \mu_{t}^{B}(\theta), \mu_{t}^{C}(\theta), \mu_{t}^{D}(\theta)\right\} \times \\
\ell_{A}^{\theta}\left(s_{1}^{A}, \cdots, s_{t+1}^{A}\right)
\end{gathered}
$$

（1）malicious messages
（2）beliefs can completely biased
（3）need to remove＂outliers＂

Information Reconciliation

Update

$$
\begin{gathered}
\mu_{t+1}^{A}(\theta) \propto \underset{\operatorname{reconcile}}{ }\left\{\mu_{t}^{A}(\theta), \mu_{t}^{B}(\theta), \mu_{t}^{C}(\theta), \mu_{t}^{D}(\theta)\right\} \times \\
\ell_{A}^{\theta}\left(s_{1}^{A}, \cdots, s_{t+1}^{A}\right)
\end{gathered}
$$

(1) malicious messages
(2) beliefs can completely biased
(3) need to remove "outliers"

Byzantine consensus: Trimming away "outliers" + averaging [Mendes\&Herlihy 2013, Vaidya\&Garg 2013, Vaidya 2014]

Information Reconciliation

Update

$$
\begin{gathered}
\mu_{t+1}^{A}(\theta) \propto \underset{\operatorname{reconcile}}{ }\left\{\mu_{t}^{A}(\theta), \mu_{t}^{B}(\theta), \mu_{t}^{C}(\theta), \mu_{t}^{D}(\theta)\right\} \times \\
\ell_{A}^{\theta}\left(s_{1}^{A}, \cdots, s_{t+1}^{A}\right)
\end{gathered}
$$

(1) malicious messages
(2) beliefs can completely biased
(3) need to remove "outliers"

Byzantine consensus: Trimming away "outliers" + averaging [Mendes\&Herlihy 2013, Vaidya\&Garg 2013, Vaidya 2014]

Byzantine consensus + local learning

Information propagation is

Information propagation is

Belief vectors received by agent A

Information propagation is

Belief vectors received by agent A

Information propagation is

Information propagation forbidden due to Byzantine behaviors

Information propagation is

Belief vectors received by agent A

Information propagation is

Information propagation forbidden due to randomness of local beliefs

Information propagation is

Information propagation forbidden due to randomness of local beliefs

Info．propagation inherits randomness from local ob－ servations

Existing analysis does not applicable

Convergence Results

Theorem

Under some network identifiability condition, for $\theta \neq \theta^{*}$,

$$
\lim _{t} \mu_{i}^{t}\left(\theta^{*}\right) 1
$$

Corollary (Convergence rate)

$$
\mu_{t}^{i}(\theta) \leq \exp \left(-C t^{2}\right) \quad \text { a.s. }(C>0)
$$

Sufficient Network Identifiability Condition

- Communication network not reflect the real info. flow
- Information propagation interfered by Byzantine agents

Sufficient Network Identifiability Condition

- Communication network not reflect the real info. flow
- Information propagation interfered by Byzantine agents
- Effective communication network
- Information source agents \mathcal{S} : propagate info. out
- Observations of agents to be collectively informative, i.e.,

$$
\begin{equation*}
\sum_{i \in \mathcal{S}} D_{K L}\left(\ell_{\theta^{*}}^{i} \| \ell_{\theta}^{i}\right) \neq 0 \forall \theta \neq \theta^{*} \tag{2}
\end{equation*}
$$

Sufficient Network Identifiability Condition

－Communication network not reflect the real info．flow
－Information propagation interfered by Byzantine agents
－Effective communication network（multiple）
－Information source agents \mathcal{S} ：propagate info．out
－Observations of agents to be collectively informative，i．e．，

$$
\begin{equation*}
\sum_{i \in \mathcal{S}} D_{K L}\left(\ell_{\theta^{*}}^{i} \| \ell_{\theta}^{i}\right) \neq 0 \forall \theta \neq \theta^{*} \tag{2}
\end{equation*}
$$

Sufficient Network Identifiability Condition

- Communication network not reflect the real info. flow
- Information propagation interfered by Byzantine agents
- Effective communication network (multiple)
- Information source agents \mathcal{S} : propagate info. out
- Observations of agents to be collectively informative, i.e.,

$$
\begin{equation*}
\sum_{i \in \mathcal{S}} D_{K L}\left(\ell_{\theta^{*}}^{i} \| \ell_{\theta}^{i}\right) \neq 0 \forall \theta \neq \theta^{*} \tag{2}
\end{equation*}
$$

Sufficient Network Identifiability Condition

For every effective communication network, (2) is satisfied

Comparison with Existing Failure-Free Algrorithm

Our algorithm

- Update rule:

$$
\mu_{t+1}^{i}(\theta) \propto \text { averaging }\left\{\mu_{t}^{j}(\theta), j \in \mathcal{I}_{i}\right\} \times \ell_{i}^{\theta}\left(s_{1}^{i}, \ldots, s_{t+1}^{i}\right)
$$

- Convergence rate: $\mu_{t}^{i}(\theta) \leq \exp \left(-C t^{2}\right)$

Existing algorithm [Jadbabaie 12, Shahrampour 15, Nedic 15]

- Update rule: $\mu_{t+1}^{i}(\theta) \propto$ averaging $\left\{\mu_{t}^{j}(\theta), j \in \mathcal{I}_{i}\right\} \times \ell_{i}^{\theta}\left(s_{t+1}^{i}\right)$
- Convergence rate: $\mu_{t}^{i}(\theta) \leq \exp (-\tilde{C} t)$

Low Complexity Variant

－Computation complexity per iteration：High
－Network identifiability：Not minimal

Low Complexity Variant

- Computation complexity per iteration: High
- Network identifiability: Not minimal

Low Complexity Variant

m-ary hypo. testing $\Rightarrow m(m-1)$ ordered binary hypo. testing

For each pair θ_{1} and θ_{2}, update the likelihood ratio of θ_{1} over θ_{2}

Low Complexity Variant

－Computation complexity per iteration：High
－Network identifiability：Not minimal

Low Complexity Variant

m－ary hypo．testing $\Rightarrow m(m-1)$ ordered binary hypo． testing

For each pair θ_{1} and θ_{2} ，update the likelihood ratio of θ_{1} over θ_{2}
－Complexity：$O\left(m^{2} n \log n\right)$
－Minimal network identifiability

Finite-time Guarantees for Byzantine-Resilient Distributed State Estimation with Noisy Measurements

Problem Formulation

State estimation: A static state $\theta^{*} \in \mathbb{R}^{d}$ that each of the non-Byzantine agent is interested in learning.

Constraints: an agent can collect partial and noisy measurements only.

- (Linear observation model) For each agent, its local measurement $y_{i}(t)$ at time t is generated as

$$
y_{i}(t):=H_{i} \theta^{*}+w_{i}(t),
$$

where
(1) $H_{i} \in \mathbb{R}^{n_{i} \times d}$, where $n_{i} \ll d$, is the local observation matrix
(2) $w_{i}(t)$'s are the observation noises that are zero mean and bounded. The observation noises across agents are independent.
Applications: IoT, machine learning, wireless networks, sensor networks,

Problem Formulation

State estimation: A static state $\theta^{*} \in \mathbb{R}^{d}$ that each of the non-Byzantine agent is interested in learning.

Constraints: an agent can collect partial and noisy measurements only.

- (Linear observation model) For each agent, its local measurement $y_{i}(t)$ at time t is generated as

$$
y_{i}(t):=H_{i} \theta^{*}+w_{i}(t)
$$

where
(1) $H_{i} \in \mathbb{R}^{n_{i} \times d}$, where $n_{i} \ll d$, is the local observation matrix
(2) $w_{i}(t)$'s are the observation noises that are zero mean and bounded. The observation noises across agents are independent.
*The local observation of a Byzantine agent is well-defined.

Related Work

- Adversary-resilient State Estimation

There is a rich line of work on the adversary-resilient state estimation problem wherein the existence of a fusion center is assumed. [Kosut-Jia-Thomas-Tong '11] [Kim and Poor '11] [Sou-Sandberg-Johansson '13] ...

- Adversary-resilient Distributed State Estimation [Sundaram-Hadjicostis '11] [Chen-Kar-Moura '18 a, b,c,d,e] [Mitra-Sundaram '18] [Mitra-Ghawash-Sundaram-Abbas '21]...

Related Work

- Adversary-resilient State Estimation

There is a rich line of work on the adversary-resilient state estimation problem wherein the existence of a fusion center is assumed. [Kosut-Jia-Thomas-Tong '11] [Kim and Poor '11] [Sou-Sandberg-Johansson '13] ...

- Adversary-resilient Distributed State Estimation [Sundaram-Hadjicostis '11] [Chen-Kar-Moura '18 a, b,c,d,e] [Mitra-Sundaram '18] [Mitra-Ghawash-Sundaram-Abbas '21]...

Our focus:

Noisy measurements, partially observable local matrix, and finite-time guarantees.

A Distributed Optimization Prospective: Asymptotic local function

For each agent $i \in \mathcal{V}$, define its asymptotic local function $f_{i}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ as

$$
f_{i}(x):=\frac{1}{2} \mathbb{E}\left[\left\|H_{i} x-y_{i}\right\|_{2}^{2}\right],
$$

where the expectation of $f_{i}(x)$ is taken over the randomness of w_{i}.
$1^{*} f_{i}$ is well-defined for each agent regardless of whether it is a good agent or a Byzantine agent
2^{*} Since the distribution of w_{i} is unknown to agent i, at any finite t, function f_{i} is not accessible to agent i.

A Distributed Optimization Prospective：Finite－time local function

The agent has access to the finite－time or empirical local function $f_{i, t}$ defined as

$$
f_{i, t}(x):=\frac{1}{2 t} \sum_{s=1}^{t}\left\|H_{i} x-y_{i}(s)\right\|_{2}^{2}
$$

whose gradient at x is

$$
\begin{aligned}
\nabla f_{i, t}(x) & =\frac{1}{t} \sum_{s=1}^{t} H_{i}^{\top}\left(H_{i} x-y_{i}(s)\right) \\
& =H_{i}^{\top} H_{i}\left(x-\theta^{*}\right)-H_{i}^{\top} \frac{1}{t} \sum_{s=1}^{t} w_{i}(s) .
\end{aligned}
$$

A First Thought?

Question: Combine the local gradient descent with multi-dimensional Byzantine resilient consensus?

- The computation complexity of the relevant consensus component is prohibitively high
- which typically relies on using Tverberg points
- assured convergence rate scales poorly in d

Proposed Algorithm

High-level idea:

Each good agent iteratively aggregates the received messages by, for each coordinate, discarding the largest b and the smallest b values, and averaging the remaining.

- Local gradient descent: Agent i first computes the noisy local gradient $\nabla f_{i, t}\left(x_{i}(t-1)\right)$, and performs local gradient descent to obtain $z_{i}(t)$, i.e.,

$$
z_{i}(t)=x_{i}(t-1)-\nabla f_{i, t}\left(x_{i}(t-1)\right)
$$

Proposed Algorithm (continued)

- Information exchange: It exchanges $z_{i}(t)$ with other agents in its local neighborhood. Recall that $m_{i j}(t) \in \mathbb{R}^{d}$ is the message sent from agent i to agent j at time t. It relates to $z_{i}(t)$ as follows:

$$
m_{i j}(t)= \begin{cases}z_{i}(t) & \text { if } i \in(\mathcal{V} / \mathcal{A}) \\ \star & \text { if } i \in \mathcal{A}\end{cases}
$$

where \star denotes an arbitrary value.

- Robust aggregation: For each coordinate $k=1, \ldots, d$, the agent computes the trimmed mean to obtain $x_{i}(t)$.

Main results: Complete graphs

for ease of illustration: Applicable to computer networks and wireless networks with message forwarding

Lemma

For each iteration t, each good agent $i \in \mathcal{V} / \mathcal{A}$, and each k, there exist coefficients $\left(\beta_{i j}^{k}(t), j \in \mathcal{V} / \mathcal{A}\right)$ such that

- $x_{i}^{k}(t)=\sum_{j \in \mathcal{V} / \mathcal{A}} \beta_{i j}^{k}(t)\left\langle z_{j}(t), e_{k}\right\rangle$;
- $0 \leq \beta_{i j}^{k}(t) \leq \frac{1}{\phi-b}$ for all $j \in \mathcal{V} / \mathcal{A}$ and $\sum_{j \in \mathcal{V} / \mathcal{A}} \beta_{i j}^{k}(t)=1$, where $\phi=|\mathcal{V} / \mathcal{A}|$.

Main results: Complete graphs

for ease of illustration: Applicable to computer networks and wireless networks with message forwarding

Lemma

For each iteration t, each good agent $i \in \mathcal{V} / \mathcal{A}$, and each k, there exist coefficients $\left(\beta_{i j}^{k}(t), j \in \mathcal{V} / \mathcal{A}\right)$ such that

- $x_{i}^{k}(t)=\sum_{j \in \mathcal{V} / \mathcal{A}} \beta_{i j}^{k}(t)\left\langle z_{j}(t), e_{k}\right\rangle$;
- $0 \leq \beta_{i j}^{k}(t) \leq \frac{1}{\phi-b}$ for all $j \in \mathcal{V} / \mathcal{A}$ and $\sum_{j \in \mathcal{V} / \mathcal{A}} \beta_{i j}^{k}(t)=1$, where $\phi=|\mathcal{V} / \mathcal{A}|$.

Observations

- The update of x_{i} uses the information provided by the good agents only;
- each of the good agent has limited impact on x_{i};

Remaining analysis is still non-trivial because
$\left(\beta_{i j}^{k}(t), j \in \mathcal{V} / \mathcal{A}\right) \neq\left(\beta_{i j}^{k^{\prime}}(t), j \in \mathcal{V} / \mathcal{A}\right)$ for $k \neq k^{\prime}$

Main results：Complete graphs

Assumption 1

For all $k=1, \cdots, d$ ，we have that

$$
\frac{1}{\phi-b} \sum_{j \in \mathcal{V} / \mathcal{A}}\left\|\left(\mathbf{I}-H_{j}^{\top} H_{j}\right) e_{k}\right\|_{1}<1
$$

－Note that it can well be the case that

$$
\left\|\left(I-H_{j}^{\top} H_{j}\right) e_{k}\right\|_{1} \geq 1 \text { for some good agents. }
$$

－None of the agents are required to satisfy

$$
\left\|\left(I-H_{j}^{\top} H_{j}\right) e_{k}\right\|_{1}<1 \text { simultaneously for all } k=1, \cdots, d
$$

Main theorem

Let $\rho \triangleq \max _{k: 1 \leq k \leq d} \frac{\sum_{j \in \mathcal{V} / \mathcal{A}}\left\|\left(1-H_{j}^{\top} H_{j}\right) e_{k}\right\|_{1}}{\phi-b}$, and
$C_{0} \triangleq \max _{i \in \mathcal{V} / \mathcal{A}}\left\|H_{i}\right\|_{2}$.

Theorem

Suppose Assumption 1 holds and the graph is complete. Then

$$
\max _{i \in \mathcal{V} / \mathcal{A}}\left\|x_{i}(t)-\theta^{*}\right\|_{\infty} \xrightarrow{\text { a.s. }} 0 .
$$

Moreover, with probability at least $1-\phi \exp \left(\frac{-\epsilon^{2}(1-\rho)^{2} t}{8 C^{2}}\right)$, it holds that

$$
\begin{aligned}
& \max _{i \in \mathcal{V} / \mathcal{A}}\left\|x_{i}(t)-\theta^{*}\right\|_{\infty} \leq \rho^{t} \max _{i \in \mathcal{V} / \mathcal{A}}\left\|x_{i}(0)-\theta^{*}\right\|_{\infty} \\
& \quad+C_{0}\left(\sum_{i \in \mathcal{V} / \mathcal{A}} \sqrt{\operatorname{trace}\left(\Sigma_{j}\right)}\right) \sum_{m=1}^{t-1} \frac{\rho^{m}}{\sqrt{t-m}}+\phi \epsilon .
\end{aligned}
$$

Main results: Incomplete graphs

Theorem

Under the assumption that ensures Byzantine consensus with scalar inputs, if an assumption analogous to Assumption 1 holds, then any given $\delta \in(0,1)$, any $\epsilon>0$, and

$$
t \geq \Omega\left(n^{2} / \epsilon^{2}\right)\left(\log \frac{1}{\delta}+\log n\right)
$$

with probability at least $1-\delta$, it holds that

$$
\begin{aligned}
& \max _{i \in \mathcal{V} / \mathcal{A}}\left\|x_{i}(t)-\theta^{*}\right\|_{\infty} \leq \tilde{\rho}^{t} \max _{i \in \mathcal{V} / \mathcal{A}}\left\|x_{i}(0)-\theta^{*}\right\|_{\infty} \\
& \quad+\tilde{C}_{0} n \sum_{m=1}^{t-1} \frac{\tilde{\rho}^{m}}{\sqrt{t-m}}+\epsilon
\end{aligned}
$$

where $\tilde{\rho} \in(0,1)$.

Numerical Examples: Energy Efficiency Data Set

- Regression dataset on UCI Machine Learning Repository ${ }^{1}$: In this dataset, the vector $\theta^{*} \in \mathbb{R}^{8}$, including eight features.
- We consider a network of $|\mathcal{V} \backslash \mathcal{A}|=160$ agents. Each agent i observes only one feature corrupted by a Gaussian noise $\mathcal{N}(0,0.25)$. Also, each agent i is connected to 40 agents $i-20, i-19, \ldots, i+19, i+20$.

${ }^{1}$ https://archive.ics.uci.edu/ml/datasets/Energy+efficiency

What we discussed

－Review：Faulty free
－Crash failure and Byzantine－resilience
－Impossibility results for Byzantine－resilience
－Algorithms for Byzantine－resilience
－Optimization problem with additional structures

