Resilient distributed machine learning: Secure multi-agent federation

Lili Su (Northeastern, ECE)

CCAC21

2021

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- ▲ ロ ▶ - ▲ 国 ▶ - ▲ 国 ▶ - ▲ 国 ▶ - ♪ ● - りへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

▲ロト ▲団ト ▲ヨト ▲ヨト 三日 - のへで

Data heterogeneity: data collected at different devices might generate from different distributions

<ロ> (四)、(四)、(日)、(日)、

- E

Data heterogeneity: data collected at different devices might generate from different distributions

Low local data volume: a device has limited data collection capability

(日) (四) (三) (三) (三)

- 2

Data heterogeneity: data collected at different devices might generate from different distributions

Low local data volume: a device has limited data collection capability

<ロ> (四)、(四)、(日)、(日)、

- 2

Privacy: data moving constraints

Data heterogeneity: data collected at different devices might generate from different distributions

Low local data volume: a device has limited data collection capability

Privacy: data moving constraints

Lack of centralized data fusion center: data volume is so high that not a single machine is capability of heading of data fusion task

イロト イヨト イヨト イヨト

- 2

Data heterogeneity: data collected at different devices might generate from different distributions

Low local data volume: a device has limited data collection capability

Privacy: data moving constraints

Lack of centralized data fusion center: data volume is so high that not a single machine is capability of heading of data fusion task

Security: external adversarial attacks, unstructured system failures, and consistent external disturbance

Data heterogeneity: data collected at different devices might generate from different distributions

Low local data volume: a device has limited data collection capability

Privacy: data moving constraints

Lack of centralized data fusion center: data volume is so high that not a single machine is capability of heading of data fusion task

Security: external adversarial attacks, unstructured system failures, and consistent external disturbance

イロト イヨト イヨト イヨト

Popular System Architectures

Master: the cloud; Slaves: mobile devices

イロト イヨト イヨト イヨト

æ

Master-slave

Popular System Architectures

- Master-slave
- Fully distributed

Master: the cloud; Slaves: mobile devices

Popular System Architectures

- Master-slave
- Fully distributed

Master: the cloud; Slaves: mobile devices

Hierarchical

Master-slave

Fully distributed

Hierarchical

Data heterogeneity: data collected at different devices might generate from different distributions

Low local data volume: a device has limited data collection capability

Privacy: data moving constraints

Lack of centralized data fusion center: data volume is so high that not a single machine is capability of heading of data fusion task

Security: external adversarial attacks, unstructured system failures, and consistent external disturbance

Why adversary-resilient?

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Security: external adversarial attacks, unstructured system failures, and consistent external disturbance

Security: external adversarial attacks, unstructured system failures, and consistent external disturbance

Security: external adversarial attacks, unstructured system failures, and consistent external disturbance

・ロト ・日ト ・ヨト ・

Security: external adversarial attacks, unstructured system failures, and consistent external disturbance

- Byzantine consensus
 - Ensures secure and effective information fusion while using local communication only

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Ø Byzantine-resilient distributed optimization

- Fundamental limits
- Optimal algorithms
- Byzantine-resilient light-weight social learning
 - The first provably secure algorithm
 - A light-weight variant

Byzantine consensus

• Ensures secure and effective information fusion while using local communication only

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Ø Byzantine-resilient distributed optimization

- Fundamental limits
- Optimal algorithms
- Byzantine-resilient light-weight social learning
 - The first provably secure algorithm
 - A light-weight variant

Byzantine Consensus

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 a collection of *n* agents communicating with each other through a network *G*(*V*, *E*), where *V* = {1, · · · , *n*} and *E* denote the set of agents and communication links, respectively.

• Among the *n* agents, an *unknown* subset of agents might be compromised and behave adversarially.

Byzantine Fault Model: There exists a system adversary that can choose up to *b* out of *n* agents to compromise and control. Let $A \subseteq N$ be the set of compromised agents, referred to as *Byzantine agents*.

"The Byzantine Generals Problem", LAMPORT, SHOSTAK, and PEASE

- The adversary has complete knowledge of the network
 - the local program that each good agent is supposed to run;

- the current status of the system;
- running history of the system.

Fault/Adversary Model - II

The Byzantine agents can

- collude with each other;
- deviate from their pre-specified local programs to arbitrarily misrepresent information to the good agents;

<ロト <四ト <注入 <注下 <注下 <

mislead each of the good agents in a unique fashion, i.e., letting m_{ij}(t) ∈ ℝ^d be the message sent from agent i ∈ A to agent j ∈ V \ A at time t, it is possible that m_{ij}(t) ≠ m_{ij'}(t) for j ≠ j' ∈ V \ A.

Reaching agreement in the presence of Byzantine faults is far from trivial.

Example: For binary consensus, even in complete graphs, no distributed algorithms can tolerate more than 1/3 of the agents to be Byzantine. [Lamport, Shostak, and Pease, 82]

<ロト <四ト <注入 <注下 <注下 <

Reaching agreement in the presence of Byzantine faults is far from trivial.

Example: For binary consensus, even in complete graphs, no distributed algorithms can tolerate more than 1/3 of the agents to be Byzantine. [Lamport, Shostak, and Pease, 82]

The reached agreement could be biased and the amount of bias is out of the control of the good agents.
Background-I: Byzantine Fault-Tolerance

• proposed in [Pease-Shostak-Lamport, J. ACM80']

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Background-I: Byzantine Fault-Tolerance

- proposed in [Pease-Shostak-Lamport, J. ACM80']
- FLP impossibility result: Asynchronous Byzantine consensus is impossible to solve (FLP impossibility) [Fischer – Lynch – Peterson, J. ACM85']

Background-I: Byzantine Fault-Tolerance

- proposed in [Pease-Shostak-Lamport, J. ACM80']
- FLP impossibility result: Asynchronous Byzantine consensus is impossible to solve (FLP impossibility) [Fischer – Lynch – Peterson, J. ACM85']
- Approximate Byzantine consensus: Relaxing the necessity of agree with each other exactly [Dolev et al., J. ACM86']
 - Initially proposed for asynchronous systems, extended to synchronous systems

n: the total # of agents;

b: the maximal number of Byzantine (i.e., compromised) agents

- Communication with message relay:
 - Networks with bidirectional links [Fisher-Lynch-Paterson, PODC85']
 - $n \ge 3b + 1$, and 2b + 1 node connectivity
 - Networks with directional links [Tseng-Vaidya, PODC15']

- based on four sets nodes partition
- Local communication: an agent can only communicate with its immediate neighbors [Vaidya-Tseng-Liang, PODC'12], [LeBlanc et al., HiCoNS '12]

- Synchronous system
- Communication network: arbitrary directed graph
 - Node *i* can send message to node *j*: if node *j* is reachable via at most ℓ hops.
 - A message is modeled as a tuple m = (w, P).
 - Messages delivered by the network layer.
- Up to b Byzantine faults
 - Tamper messages <u>value</u> if it belongs to an admissible communication path, leaving message path unchanged.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• *e*–Agreement

 Validity: Outputs are within the range of inputs at fault-free nodes.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

• Termination

Each fault-free node *i* maintains a state v_i : initial state = input

Algorithm Structure: For $t \ge 1$ and node *i*,

- Transmit step.
- Receive step. Let M_i[t] be the set of messages that node i in this step.
- Update step: Node i updates its state as

 $\mathbf{v}_i[t] = Z_i(\mathcal{M}_i[t]).$

Each fault-free node *i* maintains a state v_i : initial state = input

Algorithm Structure: For $t \ge 1$ and node *i*,

- Transmit step.
- Receive step. Let M_i[t] be the set of messages that node i in this step.
- Update step: Node i updates its state as

 $\mathbf{v}_i[t] = \mathbf{Z}_i(\mathcal{M}_i[t]).$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Minimal memory across iterations

Each fault-free node *i* maintains a state v_i : initial state = input

Algorithm Structure: For $t \ge 1$ and node *i*,

- Transmit step.
- Receive step. Let M_i[t] be the set of messages that node i in this step.
- Update step: Node i updates its state as

 $\mathbf{v}_i[t] = \mathbf{Z}_i(\mathcal{M}_i[t]).$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Question: Which directed graphs can solve *iterative* approximate Byzantine consensus?

Results

Definition (*l*-restricted connectivity)

Suppose that $W \neq is$ a set of a node and that $x \notin W$. A node set S_{ℓ} with $x \notin S_{\ell}$ is called an ℓ -restricted (W, x) cut if the deletion of S_{ℓ} disconnects all (W, x)-paths of length up to ℓ . The ℓ -restricted (W, x) connectivity, denoted by $\kappa_{\ell}(W, x)$ is the size of the smallest ℓ -restricted (W, x) cut.

Definition (*l*-restricted connectivity)

Suppose that $W \neq$ is a set of a node and that $x \notin W$. A node set S_{ℓ} with $x \notin S_{\ell}$ is called an ℓ -restricted (W, x) cut if the deletion of S_{ℓ} disconnects all (W, x)-paths of length up to ℓ . The ℓ -restricted (W, x) connectivity, denoted by $\kappa_{\ell}(W, x)$ is the size of the smallest ℓ -restricted (W, x) cut.

Node *i* is influenced by *W* if $\kappa_{\ell}(W, i) > b + 1$

<ロト <四ト <注入 <注下 <注下 <

$$\kappa_{\ell}(W, i) > b + 1 \quad \iff$$

node *i* is able to utilize at least one untampered message for its state update.

《曰》 《聞》 《臣》 《臣》 三臣 …

$$\kappa_{\ell}(W, i) > b + 1 \iff$$
 node *i* is able to utilize at least one untampered message for its state update.

Node *i* is influenced by *W*

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\kappa_{\ell}(W, i) > b + 1 \iff$$
 node *i* is able to utilize at least one untampered message for its state update.

Node *i* is influenced by *W*

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\kappa_{\ell}(W, i) > b + 1 \iff$$
 node *i* is able to utilize at least one untampered message for its state update.

Node *i* is influenced by *W*

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Node *i* is influenced by *W*

Definition

For nonempty disjoint not sets *A* and *B*, we say $A \Rightarrow_{\ell} B$ if and only if there exists a node $i \in B$ such that $\kappa_{\ell}(A, i) \ge b + 1$.

Condition NC for a given ℓ

For any node partition *L*, *C*, *R*, *F* of *G* such that $L \neq \emptyset$, $R \neq \emptyset$ and $|F| \leq b$, in *G_F*, at least one of the two conditions below must be true: (i) $R \cup C \Rightarrow_{\ell} L$; (ii) $L \cup C \Rightarrow_{\ell} R$.

Condition NC for a given ℓ

For any node partition *L*, *C*, *R*, *F* of *G* such that $L \neq \emptyset$, $R \neq \emptyset$ and $|F| \leq b$, in *G_F*, at least one of the two conditions below must be true: (i) $R \cup C \Rightarrow_{\ell} L$; (ii) $L \cup C \Rightarrow_{\ell} R$.

Either a golden or a silver node exists!

Necessary Condition: Proof Sketch

Suppose neither a golden nor a silver node exists. Suppose each node in L has value 1 and each node in R, and C has value 0. Byzantine nodes in F tell each node in L their values are all 1 and tell each node in R their values are 0.

Each node in *L* does not know whether it should trust $R \cup C$ or *F*. If it chooses to trust $R \cup C$, then it should output 0. If it chooses to trust *F*, then it will update its value closer to 1.

Necessary Condition: Condition NC

Condition NC for $\ell = 1$ [Vaidya-Tseng-Liang,PODC'12]

For any node partition *L*, *C*, *R*, *F* of *G* such that $L \neq \emptyset$, $R \neq \emptyset$ and $|F| \leq f$, in the induced subgraph *G*_{*F*}, at least one of the two conditions below must be true: (i) there exists a node $i \in L$ such that $|(R \cup C) \cap N_i^-| \geq b + 1$; (ii) there exists a node $j \in R$ such that $|(L \cup C) \cap N_j^-| \geq b + 1$.

Necessary Condition NC

Allowing message relay (i.e., $\ell > 1$), the network necessary condition is strictly more relax than the one for single-hop message transmission model obtained in [Vaidya-Tseng-Liang, PODC12].

In this system, there are five nodes p_1, p_2, p_3, p_4 and p_5 ; all communication links are bi-directional; and at most one node can be adversarial, i.e., b = 1.

Necessary Condition NC

For l > 1, Condition NC is (in general) weaker than necessary condition derived under single-hop message transmission model obtained in [PODC12: Vaidya-Tseng-Liang].

 This graph does not satisfy the one in [PODC12: Vaidya-Tseng-Liang]

《曰》 《聞》 《臣》 《臣》 三臣

• satisfies our Condition NC for $\ell > 1$.

Recalling the iterative structure

Each fault-free node *i* maintains a state v_i : initial state = input

Algorithm Structure: For $t \ge 1$ and node *i*,

- Transmit step.
- Receive step. Let M_i[t] be the set of messages that node i in this step.
- Update step: Node i updates its state as

 $\mathbf{v}_i[t] = \mathbf{Z}_i(\mathcal{M}_i[t]).$

Recalling the iterative structure

Each fault-free node *i* maintains a state v_i : initial state = input

Algorithm Structure: For $t \ge 1$ and node *i*,

- Transmit step.
- Receive step. Let M_i[t] be the set of messages that node i in this step.
- Update step: Node i updates its state as

 $\mathbf{v}_i[t] = Z_i(\mathcal{M}_i[t]).$

For I = 1, [PODC12: Vaidya et al.] and [HiCoNSa12: LeBlanc et al.] both use

"Adversarial Robust" update= trimming + averaging

 When ℓ = 1: remove extreme received message values – largest f values and smallest f values

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

• When $\ell > 1$: ?

 When ℓ = 1: remove extreme received message values – largest f values and smallest f values

- When $\ell > 1$: ?
 - message values

 When ℓ = 1: remove extreme received message values – largest f values and smallest f values

- When $\ell > 1$: ?
 - message values
 - message paths

For each *i*, the trimmed messages sets $M_{is}[t]$ and $M_{il}[t]$ are constructed (identified) as

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

• Let $\mathcal{M}'_i[t] = \mathcal{M}_i[t] - \{(v_i[t-1], (i, i))\}.$

For each *i*, the trimmed messages sets $M_{is}[t]$ and $M_{il}[t]$ are constructed (identified) as

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

- Let $\mathcal{M}'_i[t] = \mathcal{M}_i[t] \{(v_i[t-1], (i, i))\}.$
- Sort messages in M_i['][t] in an increasing order.

For each *i*, the trimmed messages sets $M_{is}[t]$ and $M_{il}[t]$ are constructed (identified) as

- Let $\mathcal{M}'_i[t] = \mathcal{M}_i[t] \{(v_i[t-1], (i, i))\}.$
- Sort messages in M_i['][t] in an increasing order.
- Let $\mathcal{M}_{is}[t]$ be the largest sized subset of $\mathcal{M}'_{i}[t]$ such that
 - (i) for all $m \in \mathcal{M}'_i[t] \mathcal{M}_{is}[t]$ and $m' \in \mathcal{M}_{is}[t]$ we have value(m) \geq value(m'),
 - (ii) at least *f* nodes are needed to collectively tamper all messages in *M_{is}[t*].

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

For each *i*, the trimmed messages sets $M_{is}[t]$ and $M_{il}[t]$ are constructed (identified) as

- Let $\mathcal{M}'_i[t] = \mathcal{M}_i[t] \{(v_i[t-1], (i, i))\}.$
- Sort messages in M_i['][t] in an increasing order.
- Let $\mathcal{M}_{is}[t]$ be the largest sized subset of $\mathcal{M}'_{i}[t]$ such that
 - (i) for all $m \in \mathcal{M}'_i[t] \mathcal{M}_{is}[t]$ and $m' \in \mathcal{M}_{is}[t]$ we have value(m) \geq value(m'),
 - (ii) at least *f* nodes are needed to collectively tamper all messages in *M_{is}[t*].

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

• Set $\mathcal{M}_{ii}[t]$ is constructed similarly.

For each *i*, the trimmed messages sets $\mathcal{M}_{is}[t]$ and $\mathcal{M}_{il}[t]$ are constructed (identified) as

- Let $\mathcal{M}'_i[t] = \mathcal{M}_i[t] \{(v_i[t-1], (i, i))\}.$
- Sort messages in M_i['][t] in an increasing order.
- Let $\mathcal{M}_{is}[t]$ be the largest sized subset of $\mathcal{M}'_{i}[t]$ such that
 - (i) for all $m \in \mathcal{M}'_i[t] \mathcal{M}_{is}[t]$ and $m' \in \mathcal{M}_{is}[t]$ we have value $(m) \ge$ value(m'),
 - (ii) at least *f* nodes are needed to collectively tamper all messages in *M_{is}[t*].

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

• Set $\mathcal{M}_{ii}[t]$ is constructed similarly.

For each *i*, the trimmed messages sets $\mathcal{M}_{is}[t]$ and $\mathcal{M}_{il}[t]$ are constructed (identified) as

- Let $\mathcal{M}'_i[t] = \mathcal{M}_i[t] \{(v_i[t-1], (i, i))\}.$
- Sort messages in M_i['][t] in an increasing order.
- Let $\mathcal{M}_{is}[t]$ be the largest sized subset of $\mathcal{M}'_{i}[t]$ such that
 - (i) for all $m \in \mathcal{M}'_i[t] \mathcal{M}_{is}[t]$ and $m' \in \mathcal{M}_{is}[t]$ we have value $(m) \ge$ value(m'),
 - (ii) at least *f* nodes are needed to collectively tamper all messages in *M_{is}[t*].
- Set $\mathcal{M}_{ii}[t]$ is constructed similarly.

Both $\mathcal{M}_{is}[t]$ and $\mathcal{M}_{il}[t]$ are well-defined.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●
- Transmit step.
- 2 Receive step.
- Update step:

$$v_i[t] = \frac{1}{|\mathcal{M}_i[t] - \mathcal{M}_{is}[t] - \mathcal{M}_{il}[t]|} \sum_{m \in \mathcal{M}_i[t] - \mathcal{M}_{is}[t] - \mathcal{M}_{il}[t]} w_m$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$v_i[t]$: state of fault-free node *i* at the end of iteration *t* $\mathbf{v}[t]$: vector of states of fault-free nodes

Proof ideas

Construct a proper matrix M[t] such that

$$\mathbf{v}[t] = \mathbf{M}[t]\mathbf{v}[t-1].$$

《曰》 《聞》 《臣》 《臣》 三臣 …

$v_i[t]$: state of fault-free node *i* at the end of iteration *t* $\mathbf{v}[t]$: vector of states of fault-free nodes

Proof ideas

Construct a proper matrix M[t] such that

$$\mathbf{v}[t] = \mathbf{M}[t]\mathbf{v}[t-1].$$

Then

$$\mathbf{v}[t] = (\mathbf{M}[t]\mathbf{M}[t-1]\cdots\mathbf{M}[0])\mathbf{v}[0]$$

$v_i[t]$: state of fault-free node *i* at the end of iteration *t* $\mathbf{v}[t]$: vector of states of fault-free nodes

Proof ideas

Construct a proper matrix M[t] such that

$$\mathbf{v}[t] = \mathbf{M}[t]\mathbf{v}[t-1].$$

Then

$$\mathbf{v}[t] = (\mathbf{M}[t]\mathbf{M}[t-1]\cdots\mathbf{M}[0])\,\mathbf{v}[0]$$

• When $G(\mathcal{V}, \mathcal{E})$ satisfies Condition NC,

 $\lim_{t} \mathbf{M}[t]\mathbf{M}[t-1]\cdots\mathbf{M}[0] = \mathbf{M}^* = \mathbf{1} \cdot \pi^T.$

Matrix Construction

Recall that

$$v_i[t] = \frac{1}{|\mathcal{M}_i[t] - \mathcal{M}_{is}[t] - \mathcal{M}_{il}[t]|} \sum_{m \in \mathcal{M}_i[t] - \mathcal{M}_{is}[t] - \mathcal{M}_{il}[t]} w_m \quad (1)$$

To go from (1) to

$$\mathbf{v}[t] = \mathbf{M}[t]\mathbf{v}[t-1]$$

• • •

- Messages are collected over the G^{ℓ}
- Update graph is a subgraph of $(G_F)^{\ell}$
- Weights reallocation

Matrix Construction

Recall that

$$v_i[t] = \frac{1}{|\mathcal{M}_i[t] - \mathcal{M}_{is}[t] - \mathcal{M}_{il}[t]|} \sum_{m \in \mathcal{M}_i[t] - \mathcal{M}_{is}[t] - \mathcal{M}_{il}[t]} w_m \quad (1)$$

To go from (1) to

$$\mathbf{v}[t] = \mathbf{M}[t]\mathbf{v}[t-1]$$

- •
 - Messages are collected over the G^{ℓ}
 - Update graph is a subgraph of $(G_F)^{\ell}$
 - Weights reallocation

Condition NC guarantees that there exists a unique source component in the update graph.

Connection with existing work under unbounded path length

When G is undirected [Fischer-Lynch-Merritt,PODC85]

Theorem (Undirected Graph)

When $\ell \ge \ell^*$, if G is undirected, then $n \ge 3b + 1$ and node-connectivity of G is at least 2b + 1 if and only if G satisfies Condition NC.

《曰》 《聞》 《臣》 《臣》 三臣 …

Connection with existing work under unbounded path length

When *G* is directed [PODC15: Tseng-Vaidya] $B \rightarrow A$: Set *A* is influenced by set *B* if

•
$$A \cap B = \emptyset$$

 nodes in A collectively have at least b + 1 distinct incoming neighbors in B

Fault-Tolerant Distributed Optimization in Multi-Agent Networks

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

System Goal: Secure Multi-Agent Optimization

Cooperatively optimizing a global objective through inter-agent communication and local computations in the presence of faulty agents

・ロト ・日下 ・ヨト ・

- Robotic rendezvous problems.
- Parameter estimation in distributed sensor networks:
 - Regression-based estimates using local sensor measurements
- Large-scale distributed machine learning, where data are generated at different locations

- Review: Faulty free
- Crash failure and Byzantine-resilience
- Impossibility results for Byzantine-resilience
- Algorithms for Byzantine-resilience
- Optimization problem with additional structures

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Review: Faulty free

- Crash failure and Byzantine-resilience
- Impossibility results for Byzantine-resilience
- Algorithms for Byzantine-resilience
- Optimization problem with additional structures

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Model

- We consider a network of *n* agents with node set $\mathcal{V} = [1, 2, ..., n].$
- Each agent *i* locally has its own convex objective function h_i(x) : ℝ → ℝ.

Goal (Failure-Free)

Agents want to cooperatively minimize

$$h(x)=\frac{1}{n}\sum_{i=1}^n h_i(x).$$

[Nedic and Ozdaglar, 2009], [Duchi et al., 2012], [Tsianos et al., 2012]

- Robotic rendezvous:
 - $h_i(x)$: agent *i*'s cost for rendezvous.
 - *h*(*x*): cost for rendezvous.
- Parameter estimation in distributed sensor networks:
 - Regression-based estimates using local sensor measurements
- Large-scale distributed machine learning, where data are generated at different locations

Suppose data is collected by different agents

- agent *j* keeps local data $\{x_{j_i}, y_{j_i}\}_{i=1}^{m_j}, j = 1, \cdots, n$
- Loss function: *L*, with $L(x_{j_i}, y_{j_i}, \theta)$
- Without communication: Locally minimizing $f_j(\theta) := \sum_{i=1}^{m_j} L(x_{j_i}, y_{j_i}, \theta)$
- With communication: Globally solving ([Nedic and Ozdaglar, 2009], [Duchi et al. 2012], and etc.)

$$\min_{\theta} \quad \frac{1}{n} \sum_{j=1}^{n} f_{j}(\theta) = \frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{m_{j}} L(x_{i}, y_{i}, \theta)$$

Algorithm (fault-free) [Nedic and Ozdaglar, 2009]

- Compute *h*'_i (*x*_i[*t*]);
- Send x_i[t] to nodes in N⁺_i the outgoing neighbors of i;
- Receive *x_j*[*t*] from all its incoming neighbors *N_j*⁻;

۰

$$x_i[t+1] \leftarrow \frac{1}{|N_i^-|+1} \left(\sum_{j \in N_i^- \cup \{i\}} x_i[t] \right) - \lambda[t] h_i'(x_i[t])$$

Algorithm (fault-free) [Nedic and Ozdaglar, 2009]

- Compute *h*'_i (*x*_i[*t*]);
- Send x_i[t] to nodes in N⁺_i the outgoing neighbors of i;
- Receive x_j[t] from all its incoming neighbors N_j⁻;

۰

$$x_{i}[t+1] \leftarrow \frac{1}{|N_{i}^{-}|+1} \left(\sum_{j \in N_{i}^{-} \cup \{i\}} x_{i}[t] \right) - \lambda[t] h_{i}'(x_{i}[t])$$
$$= x_{i}[t] - \lambda[t] h_{i}'(x_{i}[t]) + \frac{1}{|N_{i}^{-}|+1} \sum_{j \in N_{i}^{-}} (x_{j}[t] - x_{i}[t])$$

It can be shown that for sufficient large *t*, we have for each $i \in V$

$$x_i[t+1] \approx x_i[t] - \lambda[t] \frac{1}{n} \sum_{i=1}^n h'_i(x_i[t]),$$

- Review: Faulty free
- Crash failure and Byzantine-resilience
- Impossibility results for Byzantine-resilience
- Algorithms for Byzantine-resilience
- Optimization problem with additional structures

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Fault models: Crash and Byzantine faults
- System models: Synchronous and asynchronous systems

- Fault models: Crash and Byzantine faults
- System models: Synchronous and asynchronous systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

When f > 0, it is impossible to solve $h(x) = \frac{1}{n} \sum_{i=1}^{n} h_i(x)$.

- Fault models: Crash and Byzantine faults
- System models: Synchronous and asynchronous systems

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

When f > 0, it is impossible to solve $h(x) = \frac{1}{n} \sum_{i=1}^{n} h_i(x)$.

Question

What should be the global objectives?

- Fault models: Crash and Byzantine faults
- System models: Synchronous and asynchronous systems

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

When f > 0, it is impossible to solve $h(x) = \frac{1}{n} \sum_{i=1}^{n} h_i(x)$.

Question

What should be the global objectives?

Observations:

- Fault models: Crash and Byzantine faults
- System models: Synchronous and asynchronous systems

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

When f > 0, it is impossible to solve $h(x) = \frac{1}{n} \sum_{i=1}^{n} h_i(x)$.

Question

What should be the global objectives?

Observations:

Only available and untampered h_i should be used.

- Fault models: Crash and Byzantine faults
- System models: Synchronous and asynchronous systems

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

When f > 0, it is impossible to solve $h(x) = \frac{1}{n} \sum_{i=1}^{n} h_i(x)$.

Question

What should be the global objectives?

Observations:

- Only available and untampered h_i should be used.
- Sufficient number of *h_i*'s should be used.

• $h_i : \mathbb{R} \to \mathbb{R}$

- convex, and continuously differentiable
- optimal set is non-empty and compact (i.e., bounded and closed)

- bounded gradient
- L-Lipschitz gradients

Global Objective: Crash Resilience - I

Up to f agents may crash – their local functions unavailable

Goal (f > 0, crash fault)

Non-faulty agents want to collaboratively minimize an unknown function of the form

$$h(\mathbf{x}) = \sum_{i \in \mathcal{V}} \alpha_i h_i(\mathbf{x}),$$

where $\alpha_i \ge 0$, $\sum_{i=1}^{n} \alpha_i = 1$, and depend on the failure pattern of the faulty agents.

When $\mathcal{F} = \{1, \ldots, f\}$ and crash at time t = 0, it holds that $\alpha_i = 0$ for $i = 1, \ldots, f$.

Intuitively speaking, the coefficients α_i 's capture the utilization level of individual measurements.

Quality of the Output

- Only convex combination: multiple output candidates
- How to measure the quality of an output candidate?

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Quality of the Output

- Only convex combination: multiple output candidates
- How to measure the quality of an output candidate?

 (β, γ) -admissibility of a given α ($\beta > 0$, and $\gamma \in$): At least γ elements of α are lower bounded by β

not
$$(\frac{2}{10}, 4)$$
-admissible

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Quality of the Output

- Only convex combination: multiple output candidates
- How to measure the quality of an output candidate?

 (β, γ) -admissibility of a given α ($\beta > 0$, and $\gamma \in$): At least γ elements of α are lower bounded by β

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Example: $\alpha = \{\frac{1}{10}, \frac{3}{10}, 0, 0, \frac{4}{10}, \frac{2}{10}, 0\}$ is $(\frac{1}{10}, 4)$ -admissible not $(\frac{2}{10}, 4)$ -admissible

Global Objective: Crash Resilience - II

Introducing two parameters $\beta \ge 0$ and $\gamma \ge 0$.

Non-faulty agents aim to minimize an unknown function

$$h(\mathbf{x}) = \sum_{i \in \mathcal{V}} \alpha_i h_i(\mathbf{x}),$$

such that

$$orall i \in \mathcal{V}, \ lpha_i \ge \mathbf{0}, \ \sum_{i \in \mathcal{V}} lpha_i = \mathbf{1},$$

and $\sum_{i \in \mathcal{V}} \mathbf{1}(lpha_i \ge eta) \ge \gamma.$

[Su and Vaidya,arxiv'15c]

• Synchronous system: $\alpha_i = \alpha_j \ge \frac{1}{n}$ for all $i, j \in \mathcal{N}$.

2 Asynchronous system: $\alpha_i \geq \frac{1}{n}$ for all $i \in \mathcal{N}$.

Global Objective: Byzantine Resilience

Up to *f* agents may be Byzantine – they can hide and adaptively lie about their local functions

Refined Goal (f > 0, Byzantine fault) for $\beta \ge 0$ and $\gamma \ge 0$

Non-faulty agents want to collaboratively minimize an unknown function of the form

$$h(\mathbf{x}) = \sum_{i \in \mathcal{N}} \alpha_i h_i(\mathbf{x}),$$

such that

$$orall i \in \mathcal{N}, \ lpha_i \geq 0, \ \sum_{i \in \mathcal{N}} lpha_i = 1$$

and $\sum_{i \in \mathcal{N}} \mathbf{1}(lpha_i \geq eta) \geq \gamma.$

《曰》 《聞》 《臣》 《臣》 三臣 …

Henceforth, we consider synchronous system.

- Review: Faulty free
- Crash failure and Byzantine-resilience
- Impossibility results for Byzantine failure
- Algorithms for Byzantine-resilience
- Optimization problem with additional structures

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Impossibility Results

Theorem 1 [S. and Vaidya, TAC'20]

When f > 0, it is impossible to minimize

$$h(x) = \sum_{i \in \mathcal{N}} \frac{1}{|\mathcal{N}|} h_i(x).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Theorem 1 [S. and Vaidya, TAC'20]

When f > 0, it is impossible to minimize

$$h(x) = \sum_{i\in\mathcal{N}} \frac{1}{|\mathcal{N}|} h_i(x).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Intuition: Need to identify which agents are Byzantine. Impossible under data heterogeneity!!!

Theorem 1 [S. and Vaidya, TAC'20]

When f > 0, it is impossible to minimize

$$h(x) = \sum_{i\in\mathcal{N}} \frac{1}{|\mathcal{N}|} h_i(x).$$

Intuition: Need to identify which agents are Byzantine. Impossible under data heterogeneity!!!

Theorem 2 [S. and Vaidya, TAC'20]

It is impossible to achieve $\beta \geq \epsilon$ and $\gamma > |\mathcal{N}| - f$ regardless of the choice of $\epsilon > 0$.

《曰》 《聞》 《臣》 《臣》 三臣 …
Theorem 1 [S. and Vaidya, TAC'20]

When f > 0, it is impossible to minimize

$$h(x) = \sum_{i\in\mathcal{N}} \frac{1}{|\mathcal{N}|} h_i(x).$$

Intuition: Need to identify which agents are Byzantine. Impossible under data heterogeneity!!!

Theorem 2 [S. and Vaidya, TAC'20]

It is impossible to achieve $\beta \ge \epsilon$ and $\gamma > |\mathcal{N}| - f$ regardless of the choice of $\epsilon > 0$.

Remark: Byzantine resilience comes at a price of sacrificing the information collected by at least *f* non-faulty agents

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

- Review: Faulty free
- Crash failure and Byzantine-resilience
- Impossibility results for Byzantine failure
- Algorithms for Byzantine-resilience
- Optimization problem with additional structures

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Algorithm 1: Broadcasting local functions

The *n* local functions collected by agent *j*

Step 2: If there exists $x_0 \in \mathbb{R}$ such that

$$\sum_{i \in A(x) - F_1^*(x)} h'_i(x) + \sum_{i \in B(x) - F_2^*(x)} h'_i(x) = 0$$

then output $\tilde{x} = x_0$; otherwise, output $\tilde{x} = \bot$.

On $F_1^*(x)$ **and** $F_2^*(x)$: F_1^* largest *f* (if any) positive gradient, F_2^* smallest *f* (if any) negative gradient

Algorithm 1: Broadcasting local functions

$$\sum_{i \in A(x) - F_1^*(x)} h'_i(x) + \sum_{i \in B(x) - F_2^*(x)} h'_i(x) = 0$$

then output $\tilde{x} = x_0$; otherwise, output $\tilde{x} = \perp$.

Theorem 3[S. and Vaidya, TAC'20, arXiv 2015'a]

When n > 3f, Algorithm 1 achieves the refined goal with $\beta = \max\{\frac{1}{n}, \frac{1}{2(|\mathcal{N}|-f)}\}$ and $\gamma = |\mathcal{N}| - f$.

Algorithm 1: Alternative Interpretation

For each $x \in \mathbb{R}$, let

$$H(x) = \sum_{i \in A(x) - F_1^*(x)} h'_i(x) + \sum_{i \in B(x) - F_2^*(x)} h'_i(x).$$

Theorem

For given \mathcal{N} and \mathcal{F} , there exists a convex and differentiable function $\mathbf{H}(\cdot)$ such that $\mathbf{H}'(x) = H(x)$.

Essentially, the above algorithm outputs an optimum of the following constrained convex optimization problem, where $Cov(\cup_{i \in \mathcal{N}} X_i) \subseteq [c, d]$:

$$\begin{array}{ll} \min \quad \mathbf{H}(x) \\ s.t. \quad x \in [c, d]. \end{array}$$

Algorithm 2: Agent *j* for $j \in \mathcal{N}$

- Perform Byzantine consensus on initial estimates $x_i[0]$'s.
- Compute h'_j (x_j[t]), and perform Byzantine broadcast of h'_j (x_j[t]) to all the agents.
- Admissibility check on received gradients $\{g_1[t], \ldots, g_n[t]\}$.
- Trim away extreme gradients. Let R^{*}_j[t] be the agents whose gradients have not been removed.

•
$$x_j[t+1] \leftarrow x_j[t] - \lambda[t] \sum_{i \in \mathcal{R}^*[t]} g_i[t].$$

Algorithm 2: Agent *j* for $j \in \mathcal{N}$

- Perform Byzantine consensus on initial estimates $x_i[0]$'s.
- Compute h'_j (x_j[t]), and perform Byzantine broadcast of h'_j (x_j[t]) to all the agents.
- Admissibility check on received gradients $\{g_1[t], \ldots, g_n[t]\}$.
- Trim away extreme gradients. Let R^{*}_j[t] be the agents whose gradients have not been removed.

•
$$x_j[t+1] \leftarrow x_j[t] - \lambda[t] \sum_{i \in \mathcal{R}^*[t]} g_i[t].$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Admissibility check: check whether the received gradients can be interpreted as the gradient of some convex functions.

 $\frac{\text{Diminishing stepsizes:}}{\sum_{t=0}^{\infty} \lambda^2[t] < \infty}. \lambda[t] \to 0, \sum_{t=0}^{\infty} \lambda[t] = \infty \text{ and }$

Correctness of Algorithm 2: Proof Ideas

- Identical estimates at non-faulty agents: $x_j[t] = x_i[t]$, for $i, j \in \mathcal{N}$. Let $x[t] = x_j[t]$.
- Admissibility check force the faulty agents behave as if its local function is admissible. Thus agent *i* keeps local function *h_i*(·) for each *i* ∈ V.
- Solution Let $H(\cdot)$ be defined as before, i.e.,

$$H(x) = \sum_{i \in A(x) - F_{1}^{*}(x)} h'_{i}(x) + \sum_{i \in B(x) - F_{2}^{*}(x)} h'_{i}(x).$$

Indeed,

$$\begin{aligned} x[t+1] &= x[t] - \lambda[t] \sum_{i \in \mathcal{R}^*[t]} g_i[t] \\ &= x[t] - \lambda[t] H(x[t]). \end{aligned}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Algorithm 2: Alternative Interpretation

Since

$$\begin{aligned} x[t+1] &= x[t] - \lambda[t] \sum_{i \in \mathcal{R}^*[t]} g_i[t] \\ &= x[t] - \lambda[t] H(x[t]), \end{aligned}$$

The agents in the network are collaboratively solving

min
$$\mathbf{H}(x)$$

s.t. $x \in [c, d]$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

using gradient descent method.

- Byzantine broadcast communication is costly.
- Fully distributed algorithm exists, in which only local communication and local computation is needed.
 - In particular, at each iteration t, agent j computes its local gradient at x_j[t] and sends both x_j[t] and its gradient to the other agents.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

• Trim over received estimates *x_i*[*t*]'s and over received gradients, respectively.

Algorithm 3: An Optimal Fully Distributed Algorithm

Theorem (S. and Vaidya, PODC'16)

There exists a distributed algorithm whose output admits an α that is (β, γ) -admissible with $\gamma = |\mathcal{N}| - f$ and $\beta = \frac{1}{2(|\mathcal{N}| - f)}$.

《曰》 《聞》 《臣》 《臣》 三臣 …

Algorithm 3: An Optimal Fully Distributed Algorithm

Theorem (S. and Vaidya, PODC'16)

There exists a distributed algorithm whose output admits an α that is (β, γ) -admissible with $\gamma = |\mathcal{N}| - f$ and $\beta = \frac{1}{2(|\mathcal{N}| - f)}$.

- $\gamma = |\mathcal{N}| f$ is optimal [S. and Vaidya, 16 ACC]
- $\beta = \frac{1}{2(|\mathcal{N}|-f)}$ is "off" by a factor of 2 - observing that the largest possible β is $\frac{1}{|\mathcal{N}|-f|}$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

- Communication network: complete graph
- Can be extended to incomplete graphs [S.and Vaidya,arXiv'15d]

Local cost functions

- $h_i : \mathbb{R} \to \mathbb{R}$
- convex, and continuously differentiable
- optimal set is non-empty and compact (i.e., bounded and closed)

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

- bounded gradient
- L-Lipschitz gradients

SBG: Synchronous Byzantine Gradient Method

gradient descent method + iterative Byzantine approximate consensus

Each agent *i* maintains local estimate $x_i[t]$

SBG (In each iteration)

Send estimate x_i[t] and gradient h'_i(x_i[t]) to all agents;

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

• $x_i[t+1] = \operatorname{Trim}\{x[t]\} - \lambda[t] \times \operatorname{Trim}\{h'[t]\}$

SBG: Synchronous Byzantine Gradient Method

gradient descent method + iterative Byzantine approximate consensus

Each agent *i* maintains local estimate $x_i[t]$

SBG (In each iteration)

- Send estimate x_i[t] and gradient h'_i(x_i[t]) to all agents;
- $x_i[t+1] = \operatorname{Trim}\{x[t]\} \lambda[t] \times \operatorname{Trim}\{h'[t]\}$

Trim: drop smallest f, largest f values, and take the mean of the remained values

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

SBG: Synchronous Byzantine Gradient Method

gradient descent method + iterative Byzantine approximate consensus

Each agent *i* maintains local estimate $x_i[t]$

SBG (In each iteration)

- Send estimate x_i[t] and gradient h'_i(x_i[t]) to all agents;
- $x_i[t+1] = \operatorname{Trim}\{x[t]\} \lambda[t] \times \operatorname{Trim}\{h'[t]\}$

Trim: drop smallest f, largest f values, and take the mean of the remained values

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Trim gradients: impose structure

i Consensus:

$$\lim_t \ \left(x_i[t]-x_j[t]\right)=0, \ \text{ for all } i,j\in\mathcal{N}$$

ii Optimality:

$$x_i[t]$$
 is asymptotically $\left(\frac{1}{2(|\mathcal{N}|-f)}, |\mathcal{N}|-f\right)$ -admissible

Asymptotically $x_i[t]$ minimizes $\sum_{j \in \mathcal{N}} \alpha_j h_j(x)$ such that α is (β, γ) -admissible with $\gamma = |\mathcal{N}| - f$ and $\beta = \frac{1}{2(|\mathcal{N}| - f)}$.

Valid function *p*:

- $p(x) = \sum_{i \in \mathcal{N}} \alpha_i h_i(x)$
- weight vector α is $(\frac{1}{2(|\mathcal{N}|-f)}, |\mathcal{N}| f)$ -admissible

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Valid function *p*:

- $p(x) = \sum_{i \in \mathcal{N}} \alpha_i h_i(x)$
- weight vector α is $(\frac{1}{2(|\mathcal{N}|-f)}, |\mathcal{N}| f)$ -admissible

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Set Y: all minimizers of valid functions

Valid function *p*:

- $p(x) = \sum_{i \in \mathcal{N}} \alpha_i h_i(x)$
- weight vector α is $(\frac{1}{2(|\mathcal{N}|-f)}, |\mathcal{N}| f)$ -admissible

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Set Y: all minimizers of valid functions

Lemma

Set Y is convex and closed.

Valid function *p*:

- $p(x) = \sum_{i \in \mathcal{N}} \alpha_i h_i(x)$
- weight vector α is $(\frac{1}{2(|\mathcal{N}|-f)}, |\mathcal{N}| f)$ -admissible

Set Y: all minimizers of valid functions

Lemma

Set Y is convex and closed.

Optimality: $x_i[t]$ is asymptotically $\left(\frac{1}{2(|\mathcal{N}|-f)}, |\mathcal{N}| - f\right)$ -admissible $\iff \lim_t Distance(x_i[t], Y) = 0$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Update rule: $x_i[t+1] = \text{Trim}\{x[t]\} - \lambda[t] \cdot \text{Trim}\{h'[t]\}$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Update rule: $x_i[t+1] = \text{Trim}\{x[t]\} - \lambda[t] \cdot \text{Trim}\{h'[t]\}$

Lemma

$$\begin{aligned} \text{Trim}\{h'[t]\} \ \text{at agent } i &= \sum_{j \in \mathcal{N}} \alpha_j^i[t] h'_j(x_j[t]), \\ \text{where } \alpha^i[t] \ \text{is} \left(\frac{1}{2(|\mathcal{N}|-f)}, |\mathcal{N}| - f\right) - \text{admissible} \end{aligned}$$

▲ロト ▲御 ▶ ▲ 善 ▶ ▲ ● ● ● ● ● ● ●

Update rule: $x_i[t+1] = \text{Trim}\{x[t]\} - \lambda[t] \cdot \text{Trim}\{h'[t]\}$

Lemma

Trim{
$$h'[t]$$
} at agent $i = \sum_{j \in N} \alpha_j^i[t] h'_j(x_j[t])$,
where $\alpha^i[t]$ is $\left(\frac{1}{2(|\mathcal{N}|-f)}, |\mathcal{N}| - f\right)$ -admissible

▲ロト ▲御 ▶ ▲ 善 ▶ ▲ ● ● ● ● ● ● ●

$$x_i[t+1] = \operatorname{Trim}\{x[t]\} - \lambda[t] \cdot \sum_{j \in \mathcal{N}} \alpha_j^i[t] h_j'(x_j[t])$$

Update rule: $x_i[t+1] = \text{Trim}\{x[t]\} - \lambda[t] \cdot \text{Trim}\{h'[t]\}$

Lemma

Trim{
$$h'[t]$$
} at agent $i = \sum_{j \in \mathcal{N}} \alpha_j^i[t] h'_j(x_j[t])$,
where $\alpha^i[t]$ is $\left(\frac{1}{2(|\mathcal{N}|-f)}, |\mathcal{N}| - f\right)$ -admissible

▲ロト ▲団ト ▲ヨト ▲ヨト 三目 - のんの

$$\begin{aligned} x_i[t+1] &= \operatorname{Trim}\{x[t]\} - \lambda[t] \cdot \sum_{j \in \mathcal{N}} \alpha_j^i[t] h_j'(x_j[t]) \\ &\approx x_i[t] - \lambda[t] \cdot \sum_{j \in \mathcal{N}} \alpha_j^i[t] h_j'(x_i[t]) \end{aligned}$$

Update rule: $x_i[t+1] = \text{Trim}\{x[t]\} - \lambda[t] \cdot \text{Trim}\{h'[t]\}$

Lemma

Trim{
$$h'[t]$$
} at agent $i = \sum_{j \in \mathcal{N}} \alpha_j^i[t] h'_j(x_j[t])$,
where $\alpha^i[t]$ is $\left(\frac{1}{2(|\mathcal{N}|-f)}, |\mathcal{N}| - f\right)$ -admissible

$$\begin{aligned} x_i[t+1] &= \operatorname{Trim}\{x[t]\} - \lambda[t] \cdot \sum_{j \in \mathcal{N}} \alpha_j^i[t] h_j'(x_j[t]) \\ &\approx x_i[t] - \lambda[t] \cdot \sum_{j \in \mathcal{N}} \alpha_j^i[t] h_j'(x_i[t]) \end{aligned}$$

 $\sum_{j \in \mathcal{N}} \alpha_j^i[t] h_j'(x_i[t])$: the gradient of a valid function $p_{t,i}$

Update rule: $x_i[t+1] = \text{Trim}\{x[t]\} - \lambda[t] \cdot \text{Trim}\{h'[t]\}$

Lemma

Trim{
$$h'[t]$$
} at agent $i = \sum_{j \in \mathcal{N}} \alpha_j^i[t] h'_j(x_j[t])$,
where $\alpha^i[t]$ is $\left(\frac{1}{2(|\mathcal{N}|-f)}, |\mathcal{N}| - f\right)$ -admissible

$$\begin{aligned} x_i[t+1] &= \operatorname{Trim}\{x[t]\} - \lambda[t] \cdot \sum_{j \in \mathcal{N}} \alpha_j^i[t] h_j'(x_j[t]) \\ &\approx x_i[t] - \lambda[t] \cdot \sum_{j \in \mathcal{N}} \alpha_j^i[t] h_j'(x_i[t]) \\ &= x_i[t] - \lambda[t] \cdot p_{t,i}'(x_i[t]) \end{aligned}$$

 $\sum_{j \in \mathcal{N}} \alpha_j^i[t] h_j'(x_i[t])$: the gradient of a valid function $p_{t,i}$

"gradient descent analysis" on the auxiliary $\{z[t]\}_{t=0}^{\infty}$ such that

 $z[t] = x_{j_t}[t]$ where $j_t \in_{j \in \mathcal{N}}$ Distance $(x_j[t], Y)$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

"gradient descent analysis" on the auxiliary $\{z[t]\}_{t=0}^{\infty}$ such that

$$z[t] = x_{j_t}[t]$$

where $j_t \in_{j \in \mathcal{N}}$ Distance $(x_j[t], Y)$.

Intuitions behind optimality:

The gradient of any valid function pushes x_i[t] towards Y

・ロト ・四ト ・ヨト ・ヨト 三田

Since Y is convex, x_i[t] is asymptotically trapped in Y

- General local function: vector inputs
 β, γ scale poorly in the input dimension d
- Incomplete graphs [S. and Vaidya, TAC'20]: weights might not be optimal

《曰》 《聞》 《臣》 《臣》 三臣 …

- General local function: vector inputs
 β, γ scale poorly in the input dimension d
- Incomplete graphs [S. and Vaidya, TAC'20]: weights might not be optimal

What if we have additional structures?

Learning in Multi-Agent Networks

Learning in Multi-Agent Networks

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

æ

- Each agent makes local observations
- Communicate with others

Learning in Multi-Agent Networks

- Each agent makes local observations
- Communicate with others

Who should be the President? What is the object in the sky? Meteor

Biden, Trump Bird, Plane, Missile,

・ロト ・ 日 ・ ・ 目 ・ ・

- Review: Faulty free
- Crash failure and Byzantine-resilience
- Impossibility results for Byzantine-resilience
- Algorithms for Byzantine-resilience
- Optimization problem with additional structures

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Learning over Multi-Agent Network (contd)

• Local observations: partially informative

Collaboration is necessary!
Learning over Multi-Agent Network (contd)

• Local observations: partially informative

Collaboration is necessary!

・ロト ・日ト ・ヨト ・ヨト

Some agents are adversarial: prevent the truth being learned

Learning over Multi-Agent Network (contd)

• Local observations: partially informative

Collaboration is necessary!

Some agents are adversarial: prevent the truth being learned

Goal: Non-faulty agents collaboratively learn the truth

- *n* agents in a directed network
- θ^* : unknown true state
- *m* possible states: $\theta_1, \ldots, \theta_m$

- *n* agents in a directed network
- θ^* : unknown true state
- *m* possible states: $\theta_1, \ldots, \theta_m$

<ロト <四ト <注入 <注下 <注下 <

• $s_t^i \sim \ell_{\theta^*}^i$: private signals of agent *i* at time *t*

Problem Formulation (contd)

Local indistinguishability

Byzantine fault model: Up to f agents suffering Byzantine faults

< □ > < □ > < □ > < □ > < □ > < □

Problem Formulation (contd)

Local indistinguishability

Byzantine fault model: Up to f agents suffering Byzantine faults

Goal: Non-faulty agents collaboratively learn θ^*

Local Information

KL divergence $D_{KL}(\ell_{\theta_j}^i \parallel \ell_{\theta_k}^i) = 0$ iff the two distributions identical

 $\Rightarrow \theta_j$ and θ_k indistinguishable to agent *i*

Local Information

KL divergence $D_{KL}(\ell_{\theta_j}^i \parallel \ell_{\theta_k}^i) = 0$ iff the two distributions identical

 $\Rightarrow \theta_j$ and θ_k indistinguishable to agent *i*

•
$$D_{KL}(I^{i}_{elephant} \parallel I^{i}_{tree}) = 0$$

 \Rightarrow *elephant* and *tree* look alike to agent *i*

Local Information

KL divergence $D_{KL}(\ell_{\theta_j}^i \parallel \ell_{\theta_k}^i) = 0$ iff the two distributions identical

 $\Rightarrow \theta_j$ and θ_k indistinguishable to agent *i*

<ロト <四ト <注入 <注下 <注下 <

•
$$D_{KL}(I^{i}_{elephant} \parallel I^{i}_{tree}) = 0$$

 \Rightarrow *elephant* and *tree* look alike to agent *i*

•
$$D_{KL}(I^i_{elephant} \parallel I^i_{tree}) > 0$$

 \Rightarrow *elephant* not confused with a *tree* by agent *i*

$$\sum_{i} D_{KL}(\ell_{\theta^*}^i \parallel \ell_{\theta}^i) \neq 0$$
 for all $\theta \neq \theta^*$

 \Rightarrow Collectively agents can distinguish θ^* (elephant) from $\theta \neq \theta^*$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

$$\sum_{i} D_{KL}(\ell_{\theta^*}^i \parallel \ell_{\theta}^i) \neq 0$$
 for all $\theta \neq \theta^*$

 \Rightarrow Collectively agents can distinguish θ^* (elephant) from $\theta \neq \theta^*$

• When all agents cooperate, this suffices to learn θ^*

$$\sum_{i} D_{KL}(\ell_{\theta^*}^i \parallel \ell_{\theta}^i) \neq 0$$
 for all $\theta \neq \theta^*$

 \Rightarrow Collectively agents can distinguish θ^* (elephant) from $\theta \neq \theta^*$

- When all agents cooperate, this suffices to learn θ^*
- Not sufficient with Byzantine agents

• Sufficient condition on I_{θ}^{i} 's for learning with Byzantine faults

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Sufficient condition on I_{θ}^{i} 's for learning with Byzantine faults

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

First distributed learning algorithm robust to Byzantine faults

Sufficient condition on l_{θ}^{i} 's for learning with Byzantine faults

- First distributed learning algorithm robust to Byzantine faults
- Proved fast convergence of the proposed algorithm

Sufficient condition on l_{θ}^{i} 's for learning with Byzantine faults

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

- First distributed learning algorithm robust to Byzantine faults
- Proved fast convergence of the proposed algorithm
- Recent results: A light-weight algorithm

Local Information v.s. Global Information

Local information:

- D_{KL}(ℓⁱ_{θ*} || ℓⁱ_θ): amount of info. at agent i to distinguish θ*, θ
 - $D_{KL}(\ell_{\theta^*}^i \parallel \ell_{\theta}^i) = 0$: non-informative
 - $D_{KL}(\ell_{\theta^*}^i \parallel \ell_{\theta}^i) \neq 0$: informative

Global information:

- $\sum_{i} D_{KL}(\ell_{\theta^*}^i \parallel \ell_{\theta}^i)$: amount of info. globally available
 - $\sum_{i} D_{KL}(\ell_{\theta^*}^i \parallel \ell_{\theta}^i) = 0$: collectively non-informative
 - $\sum_{i} D_{KL}(\ell_{\theta^*}^i \parallel \ell_{\theta}^i) \neq 0$: collectively informative

Question: Will collectively **non-informative** sufficient to learn θ^* ?

 every agent is cooperative: "collectively informative" is sufficient, i.e., θ* identifiable if

$$\sum_{i} D(\ell^{i}_{ heta^{*}} || \ell^{i}_{ heta})
eq \mathbf{0}, \qquad orall heta
eq heta^{*}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

 every agent is cooperative: "collectively informative" is sufficient, i.e., θ* identifiable if

$$\sum_{i} D(\ell_{\theta^*}^i || \ell_{\theta}^i) \neq 0, \qquad \forall \, \theta \neq \theta^*$$

- Byzantine faults: "collectively informative" is NOT sufficient !
 - Information propagation obstructed by Byzantine agents

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

 every agent is cooperative: "collectively informative" is sufficient, i.e., θ* identifiable if

$$\sum_{i} D(\ell_{\theta^*}^i || \ell_{\theta}^i) \neq 0, \qquad \forall \, \theta \neq \theta^*$$

- Byzantine faults: "collectively informative" is NOT sufficient !
 - Information propagation obstructed by Byzantine agents

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Stronger network identifiability is required !!!

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- First learning algorithm robust to Byzantine attacks:
 - each non-faulty agent learns the true state almost surely

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• beliefs on the wrong state decrease $O(\exp(-\tilde{C}t^2))$

• each non-faulty agent learns the true state almost surely

- beliefs on the wrong state decrease $O(\exp(-\tilde{C}t^2))$
- Identify sufficient condition on the global identifiability

• each non-faulty agent learns the true state almost surely

- beliefs on the wrong state decrease $O(\exp(-\tilde{C}t^2))$
- Identify sufficient condition on the global identifiability
- When f = 0 (failure-free): $O(\exp(-\tilde{C}t^2))$

• each non-faulty agent learns the true state almost surely

- beliefs on the wrong state decrease $O(\exp(-\tilde{C}t^2))$
- Identify sufficient condition on the global identifiability
- When f = 0 (failure-free): $O(\exp(-\tilde{C}t^2))$
- Low complexity variation
 - Complexity: $O(m^2 n \log n)$
 - Minimal global identifiability

Failure-free

- Bayesian learning: [Banerjee92, Gale03, Acemoglu11]
 - high complexity
- Non-Bayesian learning [Bala98, Acemoglu10, Golub10, Jadbabaie12]

<ロト <回ト < 国ト < 国ト < 国ト 三 国

• Consensus-based models [Jadbabaie12] [Nedic, Olshevsky, Uribe, TAC'17]

- $\mu_t^i = [\mu_t^i(\theta_1), \dots, \mu_t^i(\theta_m)]$: approximate belief vector
- μ_0^i : initial belief

<ロト <四ト <注入 <注下 <注下 <

- $\mu_t^i = [\mu_t^i(\theta_1), \dots, \mu_t^i(\theta_m)]$: approximate belief vector
- μ_0^i : initial belief
- Goal: $\lim_t \mu_t^i(\theta^*)$ 1

θ_1	elephant
θ_2	spear
θ_3	snake
θ_4	curtain
θ_5	wall
θ_{6}	tree
θ_7	rope

μ_t^i (elephant)	0.3
μ_t^i (spear)	0.3
μ_t^i (snake)	0.1
μ_t^i (curtain)	0.1
μ_t^i (wall)	0.1
μ_t^i (tree)	0.05
μ_t^i (rope)	0.05

Network: Alice, Bob, Charlie and David

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

- 2

At the end of time t

・ロト ・御ト ・ヨト ・ヨト

三王

During time t + 1: new observation

During time t + 1: beliefs from neighbors

<ロ> (四)、(四)、(日)、(日)、

- 2

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Update

 $\begin{aligned} & \mu_{t+1}^{A}(\theta) \\ \text{reconcile}\{\mu_{t}^{A}(\theta), \mu_{t}^{B}(\theta), \mu_{t}^{C}(\theta), \mu_{t}^{D}(\theta)\} \end{aligned}$

Update

$$\mu_{t+1}^{A}(\theta)$$

reconcile{ $\mu_{t}^{A}(\theta), \mu_{t}^{B}(\theta), \mu_{t}^{C}(\theta), \mu_{t}^{D}(\theta)$ } × $\ell_{A}^{\theta}(s_{1}^{A}, \cdots, s_{t+1}^{A})$

Update

$$\begin{array}{l} \mu_{t+1}^{\mathcal{A}}(\theta) \propto \\ \mathsf{reconcile}\{\mu_{t}^{\mathcal{A}}(\theta), \mu_{t}^{\mathcal{B}}(\theta), \mu_{t}^{\mathcal{C}}(\theta), \mu_{t}^{\mathcal{D}}(\theta)\} \times \ell_{\mathcal{A}}^{\theta}(\boldsymbol{s}_{1}^{\mathcal{A}}, \cdots, \boldsymbol{s}_{t+1}^{\mathcal{A}}) \end{array}$$

◆□▶ ◆御▶ ◆理≯ ◆理≯ ─ 臣 ─

Update

$$\begin{array}{c} \mu_{t+1}^{A}(\theta) \propto \\ \text{reconcile}\{\mu_{t}^{A}(\theta), \mu_{t}^{B}(\theta), \mu_{t}^{C}(\theta), \mu_{t}^{D}(\theta)\} \times \ell_{A}^{\theta}(s_{1}^{A}, \cdots, s_{t+1}^{A}) \end{array}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

$$\ell^{\theta}_{A}(s^{A}_{1},\cdots,s^{A}_{t+1})$$
:

- local history summary
- easy computation: $\ell^{\theta}_{A}(s^{A}_{1}, \cdots, s^{A}_{t+1}) = \ell^{\theta}_{A}(s^{A}_{1}, \cdots, s^{A}_{t})\ell^{\theta}_{A}(s^{A}_{t+1})$
$\begin{array}{l} \mu_{t+1}^{A}(\theta) \propto \mbox{reconcile}\{\mu_{t}^{A}(\theta), \mu_{t}^{B}(\theta), \mu_{t}^{C}(\theta), \mu_{t}^{D}(\theta)\} \times \\ \ell_{\mathcal{A}}^{\theta}(s_{1}^{A}, \cdots, s_{t+1}^{A}) \end{array}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Information Reconciliation

Update

$$\begin{array}{l} \mu_{t+1}^{\mathcal{A}}(\theta) \propto \operatorname{reconcile}\{\mu_{t}^{\mathcal{A}}(\theta), \mu_{t}^{\mathcal{B}}(\theta), \mu_{t}^{\mathcal{C}}(\theta), \mu_{t}^{\mathcal{D}}(\theta)\} \times \\ \ell_{\mathcal{A}}^{\theta}(s_{1}^{\mathcal{A}}, \cdots, s_{t+1}^{\mathcal{A}}) \end{array}$$

malicious messages

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Information Reconciliation

Update

$$\mu_{t+1}^{\mathcal{A}}(\theta) \propto \operatorname{reconcile}\{\mu_{t}^{\mathcal{A}}(\theta), \mu_{t}^{\mathcal{B}}(\theta), \mu_{t}^{\mathcal{C}}(\theta), \mu_{t}^{\mathcal{D}}(\theta)\} \times \ell_{\mathcal{A}}^{\theta}(s_{1}^{\mathcal{A}}, \cdots, s_{t+1}^{\mathcal{A}})$$

- malicious messages
- eliefs can completely biased

《曰》 《聞》 《臣》 《臣》 三臣 …

$$\begin{array}{l} \mu_{t+1}^{\mathcal{A}}(\theta) \propto \mbox{reconcile}\{\mu_{t}^{\mathcal{A}}(\theta), \mu_{t}^{\mathcal{B}}(\theta), \mu_{t}^{\mathcal{C}}(\theta), \mu_{t}^{\mathcal{D}}(\theta)\} \times \\ \ell_{\mathcal{A}}^{\theta}(s_{1}^{\mathcal{A}}, \cdots, s_{t+1}^{\mathcal{A}}) \end{array}$$

- malicious messages
- eliefs can completely biased
- Ineed to remove "outliers"

$$\begin{array}{l} \mu_{t+1}^{\mathcal{A}}(\theta) \propto \mbox{reconcile}\{\mu_{t}^{\mathcal{A}}(\theta), \mu_{t}^{\mathcal{B}}(\theta), \mu_{t}^{\mathcal{C}}(\theta), \mu_{t}^{\mathcal{D}}(\theta)\} \times \\ \ell_{\mathcal{A}}^{\theta}(s_{1}^{\mathcal{A}}, \cdots, s_{t+1}^{\mathcal{A}}) \end{array}$$

- malicious messages
- eliefs can completely biased
- Ineed to remove "outliers"

Byzantine consensus: Trimming away "outliers" + averaging [Mendes&Herlihy 2013, Vaidya&Garg 2013, Vaidya 2014]

<ロト <回ト < 国ト < 国ト < 国ト 三 国

$$\begin{array}{l} \mu_{t+1}^{\mathcal{A}}(\theta) \propto \mbox{reconcile}\{\mu_{t}^{\mathcal{A}}(\theta), \mu_{t}^{\mathcal{B}}(\theta), \mu_{t}^{\mathcal{C}}(\theta), \mu_{t}^{\mathcal{D}}(\theta)\} \times \\ \ell_{\mathcal{A}}^{\theta}(s_{1}^{\mathcal{A}}, \cdots, s_{t+1}^{\mathcal{A}}) \end{array}$$

- malicious messages
- eliefs can completely biased
- Ineed to remove "outliers"

Byzantine consensus: Trimming away "outliers" + averaging [Mendes&Herlihy 2013, Vaidya&Garg 2013, Vaidya 2014]

Byzantine consensus + local learning

《曰》 《聞》 《臣》 《臣》 三臣 …

(日) (문) (문) (문) (문)

Belief vectors received by agent A

Belief vectors received by agent A

Information propagation forbidden due to Byzantine behaviors

Belief vectors received by agent A

Information propagation forbidden due to randomness of local beliefs

Information propagation forbidden due to randomness of local beliefs

Info. propagation inherits randomness from local observations

Existing analysis does not applicable

Convergence Results

Theorem

Under some network identifiability condition, for $\theta \neq \theta^*$,

 $\lim_t \mu_i^t(\theta^*)\mathbf{1}$

Corollary (Convergence rate)

$$\mu_t^i(heta) \leq \exp\left(-Ct^2
ight) \;\; \textit{a.s.} \left(C>0
ight)$$

- Communication network not reflect the real info. flow
 - Information propagation interfered by Byzantine agents

- Communication network not reflect the real info. flow
 - Information propagation interfered by Byzantine agents
- Effective communication network
 - Information source agents S: propagate info. out
 - Observations of agents to be collectively informative, i.e.,

$$\sum_{i \in S} D_{KL} \left(\ell_{\theta^*}^i \parallel \ell_{\theta}^i \right) \neq \mathbf{0} \ \forall \theta \neq \theta^*$$
(2)

- Communication network not reflect the real info. flow
 - Information propagation interfered by Byzantine agents
- Effective communication network (multiple)
 - Information source agents S: propagate info. out
 - Observations of agents to be collectively informative, i.e.,

$$\sum_{i \in S} D_{\mathcal{KL}} \left(\ell_{\theta^*}^i \parallel \ell_{\theta}^i \right) \neq \mathbf{0} \ \forall \theta \neq \theta^*$$
(2)

- Communication network not reflect the real info. flow
 - Information propagation interfered by Byzantine agents
- Effective communication network (multiple)
 - Information source agents S: propagate info. out
 - Observations of agents to be collectively informative, i.e.,

$$\sum_{i \in S} D_{KL} \left(\ell_{\theta^*}^i \parallel \ell_{\theta}^i \right) \neq \mathbf{0} \ \forall \theta \neq \theta^*$$
(2)

Sufficient Network Identifiability Condition

For every effective communication network, (2) is satisfied

Comparison with Existing Failure-Free Algrorithm

Our algorithm

• Update rule:

 $\mu_{t+1}^{i}(\theta) \propto \operatorname{averaging}\{\mu_{t}^{j}(\theta), j \in \mathcal{I}_{i}\} \times \ell_{i}^{\theta}(\boldsymbol{s}_{1}^{i}, \dots, \boldsymbol{s}_{t+1}^{i})$

• Convergence rate: $\mu_t^i(\theta) \leq \exp\left(-Ct^2\right)$

Existing algorithm [Jadbabaie 12, Shahrampour 15, Nedic 15]

• Update rule: $\mu_{t+1}^{i}(\theta) \propto \operatorname{averaging}\{\mu_{t}^{j}(\theta), j \in \mathcal{I}_{i}\} \times \ell_{i}^{\theta}(s_{t+1}^{i})$

▲ロト ▲母ト ▲臣ト ▲臣ト 三臣 - のへで

• Convergence rate:
$$\mu_t^i(heta) \leq \exp\left(- ilde{\mathcal{C}}t
ight)$$

Low Complexity Variant

• Computation complexity per iteration: High

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Network identifiability: Not minimal

Low Complexity Variant

- Computation complexity per iteration: High
- Network identifiability: Not minimal

Low Complexity Variant

m-ary hypo. testing $\Rightarrow m(m-1)$ ordered binary hypo. testing

For each pair θ_1 and θ_2 , update the likelihood ratio of θ_1 over θ_2

Low Complexity Variant

- Computation complexity per iteration: High
- Network identifiability: Not minimal

Low Complexity Variant

m-ary hypo. testing $\Rightarrow m(m-1)$ ordered binary hypo. testing

For each pair θ_1 and θ_2 , update the likelihood ratio of θ_1 over θ_2

12

イロト イヨト イヨト イヨト

- Complexity: $O(m^2 n \log n)$
- Minimal network identifiability

Finite-time Guarantees for Byzantine-Resilient Distributed State Estimation with Noisy Measurements

State estimation: A static state $\theta^* \in \mathbb{R}^d$ that each of the non-Byzantine agent is interested in learning.

<u>Constraints</u>: an agent can collect *partial* and *noisy* measurements only.

 (Linear observation model) For each agent, its local measurement y_i(t) at time t is generated as

$$\mathbf{y}_i(t) := \mathbf{H}_i \theta^* + \mathbf{w}_i(t),$$

where

- (1) $H_i \in \mathbb{R}^{n_i \times d}$, where $n_i \ll d$, is the local observation matrix
- (2) w_i(t)'s are the observation noises that are zero mean and bounded. The observation noises across agents are independent.

Applications: IoT, machine learning, wireless networks, sensor networks, and robotic networks

State estimation: A static state $\theta^* \in \mathbb{R}^d$ that each of the non-Byzantine agent is interested in learning.

<u>Constraints</u>: an agent can collect *partial* and *noisy* measurements only.

 (Linear observation model) For each agent, its local measurement y_i(t) at time t is generated as

$$\mathbf{y}_i(t) := \mathbf{H}_i \theta^* + \mathbf{w}_i(t),$$

where

- (1) $H_i \in \mathbb{R}^{n_i \times d}$, where $n_i \ll d$, is the local observation matrix
- (2) w_i(t)'s are the observation noises that are zero mean and bounded. The observation noises across agents are independent.

*The local observation of a Byzantine agent is well-defined.

Adversary-resilient State Estimation

There is a rich line of work on the adversary-resilient state estimation problem wherein the existence of a fusion center is assumed. [Kosut-Jia-Thomas-Tong '11] [Kim and Poor '11] [Sou-Sandberg-Johansson '13] ...

• Adversary-resilient Distributed State Estimation [Sundaram-Hadjicostis '11] [Chen-Kar-Moura '18 a, b,c,d,e] [Mitra-Sundaram '18] [Mitra-Ghawash-Sundaram-Abbas '21]...

Adversary-resilient State Estimation

There is a rich line of work on the adversary-resilient state estimation problem wherein the existence of a fusion center is assumed. [Kosut-Jia-Thomas-Tong '11] [Kim and Poor '11] [Sou-Sandberg-Johansson '13] ...

Adversary-resilient Distributed State Estimation
 [Sundaram-Hadjicostis '11] [Chen-Kar-Moura '18 a, b,c,d,e]
 [Mitra-Sundaram '18] [Mitra-Ghawash-Sundaram-Abbas '21]...

Our focus:

Noisy measurements, partially observable local matrix, and finite-time guarantees.

< ロ > (四 > (四 > (四 > (四 >)) 권)

A Distributed Optimization Prospective: Asymptotic local function

For each agent $i \in \mathcal{V}$, define its *asymptotic* local function $f_i : \mathbb{R}^d \to \mathbb{R}$ as

$$f_i(x) := \frac{1}{2} \mathbb{E}\left[\|H_i x - y_i\|_2^2 \right],$$

where the expectation of $f_i(x)$ is taken over the randomness of w_i .

- 1^{*} *f_i* is well-defined for each agent regardless of whether it is a good agent or a Byzantine agent
- 2^{*} Since the distribution of w_i is unknown to agent *i*, at any finite *t*, function f_i is not accessible to agent *i*.

A Distributed Optimization Prospective: Finite-time local function

The agent has access to the *finite-time* or *empirical* local function $f_{i,t}$ defined as

$$f_{i,t}(x) := \frac{1}{2t} \sum_{s=1}^{t} \|H_i x - y_i(s)\|_2^2,$$

whose gradient at x is

1

$$\nabla f_{i,t}(x) = \frac{1}{t} \sum_{s=1}^{t} H_i^\top (H_i x - y_i(s))$$
$$= H_i^\top H_i(x - \theta^*) - H_i^\top \frac{1}{t} \sum_{s=1}^{t} w_i(s).$$

<ロト <回ト < 国ト < 国ト < 国ト 三 国

Question: Combine the local gradient descent with multi-dimensional Byzantine resilient consensus?

• The computation complexity of the relevant consensus component is prohibitively high

- which typically relies on using Tverberg points
- assured convergence rate scales poorly in d

High-level idea:

Each good agent iteratively aggregates the received messages by, for each coordinate, discarding the largest *b* and the smallest *b* values, and averaging the remaining.

• Local gradient descent: Agent *i* first computes the noisy local gradient $\nabla f_{i,t}(x_i(t-1))$, and performs local gradient descent to obtain $z_i(t)$, i.e.,

$$z_i(t) = x_i(t-1) - \nabla f_{i,t}(x_i(t-1)).$$

《曰》 《聞》 《臣》 《臣》 三臣 …

• Information exchange: It exchanges $z_i(t)$ with other agents in its local neighborhood. Recall that $m_{ij}(t) \in \mathbb{R}^d$ is the message sent from agent *i* to agent *j* at time *t*. It relates to $z_i(t)$ as follows:

$$m_{ij}(t) = egin{cases} z_i(t) & ext{ if } i \in (\mathcal{V}/\mathcal{A}); \ \star & ext{ if } i \in \mathcal{A}, \end{cases}$$

where \star denotes an arbitrary value.

• *Robust aggregation:* For each coordinate k = 1, ..., d, the agent computes the trimmed mean to obtain $x_i(t)$.

Main results: Complete graphs

for ease of illustration: Applicable to computer networks and wireless networks with message forwarding

Lemma

For each iteration *t*, each good agent $i \in \mathcal{V}/\mathcal{A}$, and each *k*, there exist coefficients $\left(\beta_{ij}^{k}(t), j \in \mathcal{V}/\mathcal{A}\right)$ such that • $x_{i}^{k}(t) = \sum_{i \in \mathcal{V}/\mathcal{A}} \beta_{ii}^{k}(t) \langle z_{i}(t), \mathbf{e}_{k} \rangle;$

•
$$0 \leq \beta_{ij}^k(t) \leq \frac{1}{\phi-b}$$
 for all $j \in \mathcal{V}/\mathcal{A}$ and $\sum_{j \in \mathcal{V}/\mathcal{A}} \beta_{ij}^k(t) = 1$, where $\phi = |\mathcal{V}/\mathcal{A}|$.

《曰》 《聞》 《臣》 《臣》 三臣 …

Main results: Complete graphs

for ease of illustration: Applicable to computer networks and wireless networks with message forwarding

Lemma

For each iteration t, each good agent $i \in \mathcal{V}/\mathcal{A}$, and each k, there exist coefficients $\left(\beta_{ij}^{k}(t), j \in \mathcal{V}/\mathcal{A}\right)$ such that

•
$$x_i^k(t) = \sum_{j \in \mathcal{V}/\mathcal{A}} \beta_{ij}^k(t) \langle z_j(t), e_k \rangle;$$

• $0 \leq \beta_i^k(t) \leq \frac{1}{2}$ for all $i \in \mathcal{V}/\mathcal{A}$ and $\sum_{i=1}^{k} \alpha_i = \alpha_i + \frac{1}{2}$

• $0 \leq \beta_{ij}^{\kappa}(t) \leq \frac{1}{\phi-b}$ for all $j \in \mathcal{V}/\mathcal{A}$ and $\sum_{j \in \mathcal{V}/\mathcal{A}} \beta_{ij}^{\kappa}(t) = 1$, where $\phi = |\mathcal{V}/\mathcal{A}|$.

Observations

- The update of *x_i* uses the information provided by the *good* agents only;
- each of the good agent has limited impact on x_i;

Remaining analysis is still non-trivial because

$$\left(\beta_{ij}^{k}(t), \ j \in \mathcal{V}/\mathcal{A}\right) \neq \left(\beta_{ij}^{k'}(t), \ j \in \mathcal{V}/\mathcal{A}\right) \text{ for } \underset{a \neq k'}{k \neq k'}$$

Assumption 1

For all $k = 1, \dots, d$, we have that

$$\frac{1}{\phi - b} \sum_{j \in \mathcal{V}/\mathcal{A}} \left\| \left(\mathbf{I} - H_j^\top H_j \right) \boldsymbol{e}_k \right\|_1 < 1.$$

• Note that it can well be the case that $\left\| \left(\mathbf{I} - H_j^\top H_j \right) \mathbf{e}_k \right\|_1 \ge 1$ for some good agents.

• None of the agents are required to satisfy $\left\| \left(\mathbf{I} - H_j^\top H_j \right) e_k \right\|_1 < 1$ simultaneously for all $k = 1, \cdots, d$.

Main theorem

Let
$$\rho \triangleq \max_{k:1 \leq k \leq d} \frac{\sum_{j \in \mathcal{V}/\mathcal{A}} \left\| \left(\mathbf{I} - H_j^\top H_j \right) \mathbf{e}_k \right\|_1}{\phi - b}$$
, and $C_0 \triangleq \max_{i \in \mathcal{V}/\mathcal{A}} \| H_i \|_2$.

Theorem

Suppose Assumption 1 holds and the graph is complete. Then

$$\max_{i\in\mathcal{V}/\mathcal{A}}\|x_i(t)-\theta^*\|_{\infty}\stackrel{a.s.}{\to} 0.$$

Moreover, with probability at least $1 - \phi \exp\left(\frac{-\epsilon^2(1-\rho)^2 t}{8C^2}\right), \text{ it holds that}$ $\max_{i \in \mathcal{V}/\mathcal{A}} \|x_i(t) - \theta^*\|_{\infty} \le \rho^t \max_{i \in \mathcal{V}/\mathcal{A}} \|x_i(0) - \theta^*\|_{\infty}$ $+ C_0\left(\sum_{i \in \mathcal{V}/\mathcal{A}} \sqrt{\operatorname{trace}(\Sigma_j)}\right) \sum_{m=1}^{t-1} \frac{\rho^m}{\sqrt{t-m}} + \phi\epsilon.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで
Theorem

Under the assumption that ensures Byzantine consensus with scalar inputs, if an assumption analogous to Assumption 1 holds, then any given $\delta \in (0, 1)$, any $\epsilon > 0$, and

$$t \geq \Omega\left(n^2/\epsilon^2\right)\left(\log\frac{1}{\delta}+\log n\right),$$

with probability at least $1 - \delta$, it holds that

$$\begin{split} \max_{i\in\mathcal{V}/\mathcal{A}} \|x_i(t) - \theta^*\|_{\infty} &\leq \tilde{\rho}^t \max_{i\in\mathcal{V}/\mathcal{A}} \|x_i(0) - \theta^*\|_{\infty} \\ &+ \tilde{C}_0 n \sum_{m=1}^{t-1} \frac{\tilde{\rho}^m}{\sqrt{t-m}} + \epsilon, \end{split}$$

where $\tilde{\rho} \in (0, 1)$.

Numerical Examples: Energy Efficiency Data Set

- Regression dataset on UCI Machine Learning Repository¹: In this dataset, the vector θ^{*} ∈ ℝ⁸, including eight features.
- We consider a network of |𝔅 \ 𝔅| = 160 agents. Each agent *i* observes only one feature corrupted by a Gaussian noise 𝔅(0, 0.25). Also, each agent *i* is connected to 40 agents *i* − 20, *i* − 19, ..., *i* + 19, *i* + 20.

¹https://archive.ics.uci.edu/ml/datasets/Energy+efficiency

- Review: Faulty free
- Crash failure and Byzantine-resilience
- Impossibility results for Byzantine-resilience
- Algorithms for Byzantine-resilience
- Optimization problem with additional structures

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで